TR | RU | KK | BE | EN |

Критерій хі-квадрат


Хі-квадрат тест, також має назви критерій хі-квадрат або χ ² тест, — це будь-який метод статистичної оцінки гіпотез, в яких вибірковий розподіл статистичного тесту є розподіл хі-квадрат, коли нульова гіпотеза вірна, або будь-які, в яких це так асимптотично, тобто що вибірковий розподіл (якщо нульова гіпотеза вірна) можуть бути зроблені для апроксимації розподілу хі-квадрат як завгодно близько, роблячи розмір вибірки досить великим.

Зміст

  • 1 Деякі приклади
  • 2 Хі-квадрат для дисперсії в нормально розподіленій множині
  • 3 Див. також
  • 4 Зовнішні джерела

Деякі приклади

Деякі приклади хі-квадрат тестів, де розподіл хі-квадрат тільки частково справедливий:

  • тест Хі-квадрат Пірсона, також відомий як перевірка якості наближення методом хі-квадрат, або перевірка незалежності методом хі-квадрат. Коли критерій хі-квадрат згадується без модифікаторів і в контексті не уточнюєтья вид критерію, то зазвичай мається на увазі саме тест Пірсона (за певних умов замість χ ² можна використовувати точний критерій Фішера).
  • поправка Йейтса для неперервності, також відомий як тест хі-квадрат Йєтса.
  • критерій хі-квадрат Кокрана-Мантеля-Хенсзеля .
  • Тест Макнемера, використовується в деяких визначених 2 × 2 таблиць із поєднанням
  • тест Тьюки адитивності
  • тест портмане в аналізі часового ряду, перевіряє на наявність автокореляції
  • відношення ймовірності перевіряє в загальному статистичному моделюванні чи є докази необхідності переміститись з простої моделі в більш складну (де проста модель вкладена в складнішу)

Один випадок, коли розподіл досліджуваної статистичної величини є точно розподілом хі-квадрат, є тестом, що дисперсія нормально розподіленої множини має дане значення на основі вибіркової дисперсії. Такий тест застосовується рідко на практиці, оскільки значення дисперсії для перевірки рідко є відомими точно.

Хі-квадрат для дисперсії в нормально розподіленій множині

Якщо зразок розміру N береться з множини, що має нормальний розподіл, то відомий результат (див. розподілення вибіркової дисперсії) дозволяє перевірити, чи може відхилення множини дорівнювати деякому попередньо визначеному значенню. Наприклад, виробничий процес був у стабільному стані протягом тривалого періоду, що дозволило достатнью точно визначити дисперсію. Припустимо, що відбувається випробування одного з варіантів виробничого процесу, випущена невелика кількість одиниць продукції, і потрібно перевірити відхилення їх характеристик від стандарту. Тестова статистична величина T в даному випадку може бути встановлена як сума квадратів відхилень від середнього значення вибірки, поділена на гіпотетичне значення дисперсії. Тоді T має розподіл хі-квадрат з N-1 ступенями свободи. Наприклад, якщо розмір вибірки 21, область для T на рівні значимості 5% — це інтервал 9.59 до 34.17.

Див. також

  • Номограма

Зовнішні джерела

Категорія: Непараметрична статистика



Критерій хі-квадрат Інформацію Про

Критерій хі-квадрат


  • user icon

    Критерій хі-квадрат beatiful post thanks!

    29.10.2014


Критерій хі-квадрат
Критерій хі-квадрат
Критерій хі-квадрат Ви переглядаєте суб єкт.
Критерій хі-квадрат що, Критерій хі-квадрат хто, Критерій хі-квадрат опис

There are excerpts from wikipedia on this article and video

Випадкові Статті

Apollonias zeylanica

Apollonias zeylanica

Apollonias zeylanica — це вид квіткових рослин роду Аполонії родини Лаврових Зміст 1 Морфо...
Підрозділ (значення)

Підрозділ (значення)

Підрозділ: Підрозділ військова справа Команда Департамент підрозділ Підрозділ — поняття, яке ма...
Звіробій (фільм, 1990)

Звіробій (фільм, 1990)

«Звіробі́й» — художній фільм у двох серіях 1990 за мотивами однойменного роману Дж Ф Купера ...
Ольденборстель

Ольденборстель

Ольденборстель нім Oldenborstel — громада в Німеччині, розташована в землі Шлезвіг-Гольштейн Вх...