TR | RU | KK | BE | EN |

Гістони

гістони
Гісто́ни — основний клас білків, необхідних для упакування молекул ДНК у хроматин. Гістони мають невелику молекулярну масу (від 11 до 21 кДа) і дуже багаті на основні амінокислоти (аргінін і лізин), завдяки чому взаємодія між гістонами і ДНК стабілізується іонними зв'язками. Для всіх гістонів характерна наявність спільного структурного мотиву, представленого трьома α-спіралями, об'єднаними двома петлями. У більшості клітин маса гістонів приблизно рівна масі ДНК, а їх кількість сягає близько 60 млн. В еукаріотів гістони локалізуються в клітинному ядрі, в архей типу Euarchaeota — у цитоплазмі. У компактизації ДНК решти архей і бактерій можуть брати гістоноподібні білки, проте справжніх гістонів у них немає.

Білки-гістони були відкриті 1884 року Альбрехтом Косселем у екстрактах ядер еритроцитів птахів. До 40-их років XX століття багато дослідників вважали саме їх носіями спадкової інформації.

Існує п'ять різних типів гістонів, а саме H1, H2A, H2B, H3 та H4. Послідовність амінокислот у цих білках мало відрізняється серед еукаріотів різного рівня організації. Найбільш консервативною вона є у гістонів H3 і H4: так з гістони H4 корови і горошку відрізняються тільки двома із 102 амінокислотних залишків, а людини і дріжджів — восьма, дещо більше різняться між видами еукаріот послідовності гістонів H1, H2A і H2B. Така консервативність їхньої структури свідчить про виняткову важливість для організму, а також про те, що майже кожен амінокислотний залишок у складі цих білки є функціонально важливим. Ця гіпотеза була перевірена на клітинах дріжджів, шляхом заміни нормальних генів гістонів на мутовані. З'ясувалось, що більшість змін в амінокислотній послідовності гістонів є летальною, а та невелика частка мутацій, які не були смертельними, однаково призводили до серйозних порушень експресії генів та інших аномалій.

Гістони не тільки забезпечують упакування ДНК, але й відіграють важливу роль у регуляції експресії генів, перебудові хроматину тощо. Кожен із них може бути субстратом для різноманітних модифікацій: метилювання, ацетилювання, АДФ-рибозилювання, фосфорилювання, глікозилювання, убіквітинування, сумолювання. Оскільки ці зміни впливають на заряд і форму гістонів, то призводять до зміни структури хроматину. Окрім того існують варіанти деяких гістонів, що відіграють особливу роль у метаболізмі ДНК.

Зміст

  • 1 Варіанти білків гістонів
    • 1.1 Приклади деяких варіантів гістонів
  • 2 Гени гістонів
  • 3 Модифікації білків-гістонів
  • 4 Примітки

Варіанти білків гістонів

Окрім п'яти «канонічних» гістонів, існують також мінорні форми, що є видозмінами перших. Таких варіантів було найбільше виявлено для гістонів H2A і H3. Гени цих білків експресуються впродовж всього клітинного циклу, і вбудовуються у хроматин не залежно від процесу реплікації. Для цього потрібні спеціальні гістонові шаперони і комплекси ремоделювання хроматину. Варіанти гістонів можуть заміщувати бліки, яких бракує у нуклеосомах, або вбудовуватись у специфічні ділянки геному. Більшість із них, як і канонічні форми, є еволюційно консервативними, що вказує на незамінну роль у життєдіяльності клітин. Проте деякі варіанти, наприклад H2A-Bdb-подібні гістони, швидко еволюціонують і виконують тканино- і навіть клітино-специфічні функції у яєчках і мозку.

Приклади деяких варіантів гістонів

Гістон H2A.Z
Гістон H2A.Z знайдений у майже всіх еукаріот. Асоційований в основному із транскрипційно активними ділянками. Його функції до кінця не з'ясовані, ймовірно, що він бере участь у встановленні і підтриманні структури промотора, сприятливої для приєднання РНК-полімерази II. Також існують дані про те, що наявність цього варіанту гістона у нуклеосомах перешкоджає їх взаємодії одна з одною, таким чином сприяючи більш відкритому стану хроматину.
Гістон H2A.X
Гістон H2A.X пов'язаний із репапрацією і рекомбінацією ДНК. Нестача цього білка у мишей має наслідком генетичну нестабільність і чоловічу безплідність. Невеликі кількості нуклеосом, що містять H2AX, розкидані по всьому геному; якщо поблизу такої нуклеосоми стається двонитковий розрив ДНК, H2AX фосфорилюється по залишку Ser139, що розташований у SQ-мотиві на C-кінці. Остання подія необхідна для збирання апарату репарації у цьому місці
Гістон MacroH2A
Гістон MacroH2A є варіантом H2A, що є специфічним тільки для хребетних тварин. Місить великий «макродомен» на C-кінці. Бере участь в інактивації X-хромосоми у гомогаметної статі.
Гістон H2A.Bdb
Гістон H2A.Bdb — варіант, наявний тільки у людини, експресуюється у яєчках і головному мозку. Функції H2A.Bdb не з'ясовані.
Гістон H2A.Lap1
Гістон H2A.Lap1 — це мишача ізоформа H2A.Bdb, експресується у тих же органах. Відома роль цього варіанту у просторовій і часовій активації генів, специфічних для тканини яєчок.
Гістон H3.3
Гістон H3.3 — варіант гістону H3 і заміщує його в транскрипційно активних ділянках.
Гістон CenH3
Гістон CenH3 — варіант гістону H3, наявний у ділянках центромер. CenH3 — загальна назва, що позначає білки Cse4 у дріжджів, CENPA у людей і мишей, Cid у дрозофіли тощо. Цей гістон необхідний для збирання кінетохорів, до яких кріпляться нитки веретена поділу.

Гени гістонів

Гени корових гістонів, що формують стандартну нуклеосому — H2A, H2B, H3 та H4 — разом з лінкерним гістоном H1 розміщуються в еукаріотів у вигляді кластерів у геномі. Вони експресуються залежно від стадії клітинного циклу, їх транскрипція починається з настанням S-фази, деградація їх мРНК виникає в кінці S-фази, тому ці п'ять гістонів ще називають залежними від ДНК-реплікації (англ. replication-dependent histones). В контролі деградації мРНК гістонів важливу роль грає урідинування РНК..

Структура мРНК гістонів людини. 5' НТР − 5'-нетрансльована ділянка; 3' НТР − 3'-нетрансльована ділянка; зелений прапорець індикує старт відкритої рамки зчитування. Послідовність в 5 нуклеотидів АЦЦЦА притаманна людині та ін. ссавцям, тоді як у плодової мухи ця послідовність ААЦЦА, у C.elegans − АЦААА.

Матричні РНК цих гістонів — єдині мРНК евкаріотів, у яких не відбувається поліаденілування і немає поліА-хвоста. Замість цього під час процесингу мРНК гістонів формується шпилька на 3'-кінці. Зі шпилькою з'єднується білок SLBP (англ. stem-loop binding protein), який бере участь у експорті мРНК до цитоплазми, де транслюються гістони, які потім імпортуються назад до ядра. У мРНК гістонів також відсутні інтрони, а нетрансльовані послідовності відносно короткі..

Проте інші гістонові варіанти, як то MacroH2A, експресуються незалежно від циклу клітини і мають стандартну мРНК.

Модифікації білків-гістонів

Докладніше: Гістоновий код

«Хвости» гістонів, тобто їх N-кінцеві послідовності, що виступають назовні нуклеосоми, можуть бути місцями різноманітних посттрансляційних модифікацій (ПТМ) — приєднання певних хімічних груп, таких як метильна, ацетильна, фосфатна, глікозильна, АДФ-рибозильна, а також білків убіквітину і SUMO. Ці зміни є оборотними, вони здійснюються специфічними строго регульованими ферментами і мають складні біологічні наслідки, що залежать не тільки від хімічної групи, яка приєднується, а й від її положення і загального контексту. Для гістонів були відкриті фактичні всі можливі ПТМ білків, і відкриття нових сайтів модифікації триває, проте біологічне значення не всіх цих змін доведене.

Примітки

  1. а б в Nelson D.L., Cox M.M. (2008). Lehninger Principles of Biochemistry (вид. 5th). W. H. Freeman. с. 963. ISBN 978-0-7167-7108-1. 
  2. а б Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007). Molecular Biology of the Cell (вид. 5th). Garland Science. с. 211—217. ISBN 978-0-8153-4105-5. 
  3. ↑ Olins D.E., Olins A.L. Chromatin history: our view from the bridge // Nature Reviews Molecular Cell Biology. — 2003. — October. — Т. 4, № 10. — С. 809—815. — DOI:10.1038/nrm1225. — PMID:14570061. Процитовано 13.07.2013.
  4. а б в г д е ж и к Luger K, Dechassa ML, Tremethick DJ. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? // Nature Reviews Molecular Cell Biology. — 2012. — July. — Т. 7, № 13. — С. 436—47. — DOI:10.1038/nrm3382. — PMID:22722606.
  5. а б в г William F. Marzluff, Eric J. Wagner & Robert J. Duronio (November 2008). Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nature reviews. Genetics 9 (11). с. 843–854. doi:10.1038/nrg2438. PMID 18927579. 
  6. ↑ Chris J. Norbury (October 2013). Cytoplasmic RNA: a case of the tail wagging the dog. Nature reviews. Molecular cell biology 14 (10). с. 643–653. doi:10.1038/nrm3645. PMID 23989958. 
  7. ↑ Білок SLBP людини UniProt Q53XR2
  8. ↑ Thomas E. Mullen & William F. Marzluff (January 2008). Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes & development 22 (1). с. 50–65. doi:10.1101/gad.1622708. PMID 18172165. 


Це незавершена стаття з молекулярної біології.
Ви можете допомогти проекту, виправивши або дописавши її.

гістони


Гістони Інформацію Про

Гістони


  • user icon

    Гістони beatiful post thanks!

    29.10.2014


Гістони
Гістони
Гістони Ви переглядаєте суб єкт.
Гістони що, Гістони хто, Гістони опис

There are excerpts from wikipedia on this article and video

Випадкові Статті

Кошелівська сільська рада (Хустський район)

Кошелівська сільська рада (Хустський район)

Сільській раді підпорядковані населені пункти: с. Кошельово с. Залом Зміст 1 Населені пункти...
Зертаський сільський округ

Зертаський сільський округ

Зерта́ський сільський округ каз Зертас ауылдық округі, рос Зертасский сельский округ — адм...
Метрика Фрідмана-Леметра-Робертсона-Вокера

Метрика Фрідмана-Леметра-Робертсона-Вокера

Метрика Фрідмана-Леметра-Робертсона-Вокера - метрика простору-часу, яка описує однорідний ізотропний...
Копалнік-Менештур

Копалнік-Менештур

Копалнік-Менештур (рум. Copalnic-Mănăștur) — село у повіті Марамуреш в Румунії. Адміністративни...