TR | UK | KK | BE | EN |

Прямая

прямая трансляция, прямая кишка
Пряма́я — одно из фундаментальных понятий геометрии.

При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Согласно примеру Д. Гильберта («точкой можно назвать хоть стул»), может обозначать достаточно произвольные объекты, даже изображение которых будет зависеть от выбранной аксиоматики и/или модели геометрии. Например, в модели Пуанкаре геометрии Лобачевского прямыми являются полуокружности.

Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, путь вдоль которой равен расстоянию между двумя точками.

Аналитически прямая задаётся уравнением (в трёхмерном пространстве — системой уравнений) первой степени.

Содержание

  • 1 Свойства прямой в евклидовой геометрии
  • 2 Уравнения прямой на плоскости
    • 2.1 Общее уравнение прямой
    • 2.2 Уравнение прямой с угловым коэффициентом
    • 2.3 Уравнение прямой в отрезках
    • 2.4 Нормальное уравнение прямой
    • 2.5 Уравнение прямой, проходящей через две заданные несовпадающие точки
    • 2.6 Векторное параметрическое уравнение прямой
    • 2.7 Параметрические уравнения прямой
    • 2.8 Каноническое уравнение прямой
    • 2.9 Уравнение прямой в полярных координатах
    • 2.10 Тангенциальное уравнение прямой
  • 3 Уравнения прямой в пространстве
  • 4 Взаимное расположение точек и прямых на плоскости
  • 5 Взаимное расположение нескольких прямых на плоскости
  • 6 См. также
  • 7 Примечания
  • 8 Ссылки

Свойства прямой в евклидовой геометрии

  • Через любую точку можно провести бесконечно много прямых.
  • Через любые две несовпадающие точки можно провести единственную прямую.
  • Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются параллельными (следует из предыдущего).
  • В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:
    • прямые пересекаются;
    • прямые параллельны;
    • прямые скрещиваются.
  • Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия задается на плоскости уравнением первой степени (линейное уравнение).

Уравнения прямой на плоскости

Способы задания прямой:
или .

Общее уравнение прямой

Общее уравнение прямой линии на плоскости в декартовых координатах:

где и  — произвольные постоянные, причем постоянные и не равны нулю одновременно.

При прямая параллельна оси , при  — параллельна оси .

Вектор с координатами называется нормальным вектором, он перпендикулярен прямой.

При прямая проходит через начало координат.

Также уравнение можно переписать в виде

Уравнение прямой с угловым коэффициентом

Уравнение прямой линии, пересекающей ось в точке и образующей угол с положительным направлением оси :

Коэффициент называется угловым коэффициентом прямой.

В этом виде невозможно представить прямую, параллельную оси (Иногда в этом случае формально говорят, что угловой коэффициент «обращается в бесконечность».)

Получение уравнения прямой в отрезках

Уравнение прямой в отрезках

Уравнение прямой линии, пересекающей ось в точке и ось в точке :

В этом виде невозможно представить прямую, проходящую через начало координат.

Нормальное уравнение прямой

где  — длина перпендикуляра, опущенного на прямую из начала координат, а  — угол (измеренный в положительном направлении) между положительным направлением оси и направлением этого перпендикуляра. Если , то прямая проходит через начало координат, а угол задаёт угол наклона прямой.

Вывод нормального уравнения прямой  

Пусть дана прямая Тогда и Рассмотрим для этого перпендикуляра его орт Допустим, что угол между и осью равен Так как то можно записать: Теперь рассмотрим произвольную точку Проведём радиус-вектор Теперь найдём проекцию на вектор Следовательно, Это и есть нормальное уравнение прямой. ■

Если прямая задана общим уравнением то отрезки и отсекаемые ею на осях, угловой коэффициент расстояние прямой от начала координат и выражаются через коэффициенты , и следующим образом:

Во избежание неопределённости знак перед радикалом выбирается так, чтобы соблюдалось условие В этом случае и являются направляющими косинусами положительной нормали прямой — перпендикуляра, опущенного из начала координат на прямую. Если то прямая проходит через начало координат и выбор положительного направления произволен.

Уравнение прямой, проходящей через две заданные несовпадающие точки

Если заданы две несовпадающие точки с координатами и , то прямая, проходящая через них, задаётся уравнением

или

или в общем виде

Получение векторного параметрического уравнения прямой

Векторное параметрическое уравнение прямой

Векторное параметрическое уравнение прямой задается вектором конец которого лежит на прямой, и направляющим вектором прямой Параметр пробегает все действительные значения.

Параметрические уравнения прямой

Параметрические уравнения прямой могут быть записаны в виде:

где  — производный параметр,  — координаты и направляющего вектора прямой. При этом

Смысл параметра аналогичен параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой

Каноническое уравнение получается из параметрическиx уравнений делением одного уравнения на другое:

Вывод  

где  — координаты и направляющего вектора прямой, и координаты точки, принадлежащей прямой.

Уравнение прямой в полярных координатах

Уравнение прямой в полярных координатах и :

или

Тангенциальное уравнение прямой

Тангенциальное уравнение прямой на плоскости:

Числа и называются её тангенциальными, линейными или плюккеровыми координатами.

Уравнения прямой в пространстве

Векторное параметрическое уравнение прямой в пространстве:

где  — радиус-вектор некоторой фиксированной точки лежащей на прямой,  — ненулевой вектор, коллинеарный этой прямой (называемый её направляющим вектором),  — радиус-вектор произвольной точки прямой.

Параметрические уравнения прямой в пространстве:

где  — координаты некоторой фиксированной точки лежащей на прямой;  — координаты вектора, коллинеарного этой прямой.

Каноническое уравнение прямой в пространстве:

где  — координаты некоторой фиксированной точки лежащей на прямой;  — координаты вектора, коллинеарного этой прямой.

Общее векторное уравнение прямой в пространстве:

Поскольку прямая является пересечением двух различных плоскостей, заданных соответственно общими уравнениями: и

то уравнение прямой можно задать системой этих уравнений:

Векторное уравнение прямой в пространстве:196-199:

Уравнение прямой в пространстве можно записать в виде векторного произведения радиуса-вектора произвольной точки этой прямой на фиксированный направляющий вектор прямой :

где фиксированный вектор , ортогональный вектору , можно найти, подставляя в это уравнение радиус-вектор какой-нибудь одной известной точки прямой.

Взаимное расположение точек и прямых на плоскости

Три точки , и лежат на одной прямой тогда и только тогда, когда выполняется условие

Отклонение точки от прямой может быть найдено по формуле

где знак перед радикалом противоположен знаку Отклонение по модулю равно расстоянию между точкой и прямой; оно положительно, если точка и начало координат лежат по разные стороны от прямой, и отрицательно, если по одну сторону.

В пространстве расстояние от точки до прямой, заданной параметрическим уравнением

можно найти как минимальное расстояние от заданной точки до произвольной точки прямой. Коэффициент этой точки может быть найден по формуле

Взаимное расположение нескольких прямых на плоскости

Две прямые, заданные уравнениями

или

пересекаются в точке

Угол между пересекающимися прямыми определяется формулой

При этом под понимается угол, на который надо повернуть первую прямую (заданную параметрами , , , и ) вокруг точки пересечения против часовой стрелки до первого совмещения со второй прямой.

Эти прямые параллельны, если или , и перпендикулярны, если или .

Любую прямую, параллельную прямой с уравнением можно выразить уравнением При этом расстояние между этими прямыми будет равно

Если знак перед радикалом противоположен то будет положительным, когда вторая прямая и начало координат лежат по разные стороны от первой прямой.

Для того, чтобы три прямые

пересекались в одной точке или были параллельны друг другу, необходимо и достаточно, чтобы выполнялось условие

Если и , то прямые и перпендикулярны.

См. также

  • Точка
  • Интервал
  • Отрезок
  • Геодезическая
  • Прямая Александрова (англ.)
  • Прямая Суслина (англ.)
  • Плоскость

Примечания

  1. Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.

Ссылки

  • Математическая энциклопедия (в 5 томах), Москва, «Советская энциклопедия», 1982 г.
  • Маркушевич А. И. Замечательные кривые, Популярные лекции по математике. — Выпуск 4. — Гостехиздат, 1952 г. — 32 стр.
  • Прямая в пространстве, справочник математических формул «Прикладная математика»
  • Прямая на плоскости, справочник математических формул «Прикладная математика»

прямая и косвенная речь, прямая и явная угроза, прямая кишка, прямая линия, прямая линия с путиным 2018, прямая речь, прямая трансляция, прямая трансляция стб, прямая трансляция тнт, прямая трансляция футбол


Прямая Информацию О

Прямая


  • user icon

    Прямая beatiful post thanks!

    29.10.2014


Прямая
Прямая
Прямая Вы просматриваете субъект
Прямая что, Прямая кто, Прямая описание

There are excerpts from wikipedia on this article and video

Случайные Статьи

Эквивалентность массы и энергии

Эквивалентность массы и энергии

Состояниеотпатрулирована Перейти к: навигация, поиск Эта ста...
Honda Legend

Honda Legend

Honda Legend — седан премиум-класса, выпускавшийся компанией Honda с 1984 по 2013 года. Впервые...
Регулярные клирики

Регулярные клирики

Регулярные клирики — в Католической церкви разновидность монашеского ордена, члены которого зан...
Бертрада де Монфор

Бертрада де Монфор

Бертрада де Монфор (фр. Bertrade de Montfort; ок. 1070 — 1115/1116[1], Фонтевро) — до...