Tue . 20 Jul 2020
TR | RU | UK | KK | BE |

Subacromial bursitis

subacromial bursitis, subacromial bursitis exercises
Subacromial bursitis is a condition caused by inflammation of the bursa that separates the superior surface of the supraspinatus tendon one of the four tendons of the rotator cuff from the overlying coraco-acromial ligament, acromion, coracoid the acromial arch and from the deep surface of the deltoid muscle1 The subacromial bursa helps the motion of the supraspinatus tendon of the rotator cuff in activities such as overhead work

Musculoskeletal complaints are one of the most common reasons for primary care office visits, and rotator cuff disorders are the most common source of shoulder pain2

Primary inflammation of the subacromial bursa is relatively rare and may arise from autoimmune inflammatory conditions such as rheumatoid arthritis; crystal deposition disorders such as gout or pseudogout; calcific loose bodies, and infection1 More commonly, subacromial bursitis arises as a result of complex factors, thought to cause shoulder impingement symptoms These factors are broadly classified as intrinsic intratendinous or extrinsic extratendinous They are further divided into primary or secondary causes of impingement Secondary causes are thought to be part of another process such as shoulder instability or nerve injury3

In 1983 Neer described three stages of impingement syndrome4 He noted that "the symptoms and physical signs in all three stages of impingement are almost identical, including the 'impingement sign', arc of pain, crepitus, and varying weakness" The Neer classification did not distinguish between partial-thickness and full-thickness rotator cuff tears in stage III4 This has led to some controversy about the ability of physical examination tests to accurately diagnose between bursitis, impingement, impingement with or without rotator cuff tear and impingement with partial versus complete tears

In 2005, Park et al published their findings which concluded that a combination of clinical tests were more useful than a single physical examination test For the diagnosis of impingement disease, the best combination of tests were "any degree of a positive Hawkins-Kennedy test, a positive painful arc sign, and weakness in external rotation with the arm at the side," to diagnose a full thickness rotator cuff tear, the best combination of tests, when all three are positive, were the: "the painful arc, the drop-arm sign, and weakness in external rotation"5

Contents

  • 1 Signs and symptoms
  • 2 Pathophysiology
  • 3 Diagnosis
    • 31 Imaging
    • 32 Special considerations
  • 4 Treatment
    • 41 Early / initial
    • 42 Middle / intermittent
    • 43 Late / return to function
  • 5 Prognosis
  • 6 References
  • 7 External links

Signs and symptomsedit

Subacromial bursitis often presents with a constellation of symptoms called impingement syndrome Pain along the front and side of the shoulder is the most common symptom and may cause weakness and stiffness3 If the pain resolves and weakness persists other causes should be evaluated such as a tear of the rotator cuff or a neurological problem arising from the neck or entrapment of the suprascapular nerve The onset of pain may be sudden or gradual and may or may not be related to trauma Night time pain, especially sleeping on the affected shoulder, is often reported Localized redness or swelling are less common and suggest an infected subacromial bursa Individuals affected by subacromial bursitis commonly present with concomitant shoulder problems such as arthritis, rotator cuff tendinitis, rotator cuff tears, and cervical radiculopathy pinched nerve in neck

Impingement may be brought on by sports activities, such as overhead throwing sports and swimming, or overhead work such as painting, carpentry, or plumbing Activities that involve repetitive overhead activity, or directly in front, may cause shoulder pain Direct upward pressure on the shoulder, such as leaning on an elbow, may increase pain

Pathophysiologyedit

The literature on the pathophysiology of bursitis describes inflammation as the primary cause of symptoms Inflammatory bursitis is usually the result of repetitive injury to the bursa In the subacromial bursa, this generally occurs due to microtrauma to adjacent structures, particularly the supraspinatus tendon The inflammatory process causes synovial cells to multiply, increasing collagen formation and fluid production within the bursa and reduction in the outside layer of lubrication Ishii et al, 1997

Less frequently observed causes of subacromial bursitis include hemorrhagic conditions, crystal deposition and infection

Many causes have been proposed in the medical literature for subacromial impingement syndrome The bursa facilitates the motion of the rotator cuff beneath the arch, any disturbance of the relationship of the subacromial structures can lead to impingement These factors can be broadly classified as intrinsic such as tendon degeneration, rotator cuff muscle weakness and overuse Extrinsic factors include bone spurs from the acromion or AC joint, shoulder instability and neurologic problems arising outside of the shoulder3

Diagnosisedit

It is often difficult to distinguish between pain caused by bursitis or that caused by a rotator cuff injury as both exhibit similar pain patterns in the front or side of the shoulder Hartley, 1990 Subacromial bursitis can be painful with resisted abduction due to the pinching of the bursa as the deltoid contracts Buschbacher & Braddom, 1994 If the therapist performs a treatment direction test and gently applies joint traction or a caudal glide during abduction MWM, the painful arc may reduce if the problem is bursitis or adhesive capsulitis as this potentially increases the subacromial space

The following clinical tests, if positive, may indicate bursitis:

  • The patient actively abducts the arm and a painful arc occurs between 80° and 120° This is due to the compression of the supraspinatus tendon or subacromial bursa between the anterior acromial arch and humeral head When lowering from full abduction there is often a painful "catch" at midrange If the patient can achieve adequate muscle relaxation, passive motion tends to be less painful Starr & Harbhajan, 2001
  • The patient performs an isometric flexion contraction against resistance of the therapist Speed’s Test When the therapist’s resistance is removed, a sudden jerking motion results and latent pain indicates a positive test for bursitis Buschbacher & Braddom, 1994
  • Neer’s Sign: If pain occurs during forward elevation of the internally rotated arm above 90° This will identify impingement of the rotator cuff but is also sensitive for subacromial bursitis Starr & Harbhajan, 2001

Irritation or entrapment of the lower subscapular nerve, which innervates the subscapularis and teres major muscles, will produce muscle guarding at the shoulder that will restrict motion into external rotation, abduction, or flexion The aforementioned tests will assist in diagnosing bursitis over other conditions The diagnosis of impingement syndrome should be viewed with caution in people who are less than forty years old, because such individuals may have subtle glenohumeral instability6

Imagingedit

X-rays may help visualize bone spurs, acromial anatomy and arthritis Further, calcification in the subacromial space and rotator cuff may be revealed Osteoarthritis of the acromioclavicular AC joint may co-exist and is usually demonstrated on radiographs

MRI imagining can reveal fluid accumulation in the bursa and assess adjacent structures In chronic cases caused by impingement tendinosis and tears in the rotator cuff may be revealed At US, an abnormal bursa may show 1 fluid distension, 2 synovial proliferation, and/or 3 thickening of the bursal walls7 In any case, the magnitude of pathological findings does not correlate with the magnitude of the symptoms7

Special considerationsedit

In patients with bursitis who have rheumatoid arthritis, short term improvements are not taken as a sign of resolution and may require long term treatment to ensure recurrence is minimized Joint contracture of the shoulder has also been found to be at a higher incidence in type two diabetics, which may lead to frozen shoulder Donatelli, 2004

Treatmentedit

Many non-operative treatments have been advocated, including rest; oral administration of non-steroidal anti-inflammatory drugs; physical therapy; chiropractic; and local modalities such as cryotherapy, ultrasound, electromagnetic radiation, and subacromial injection of corticosteroids8

Shoulder bursitis rarely requires surgical intervention and generally responds favorably to conservative treatment Surgery is reserved for patients who fail to respond to non-operative measures Minimally invasive surgical procedures such as arthroscopic removal of the bursa allows for direct inspection of the shoulder structures and provides the opportunity for removal of bone spurs and repair of any rotator cuff tears that may be found

Early / initialedit

Initial phase of physiotherapy rehabilitation
Goals of treatment
  • Reduce inflammation
  • Reduce pain
  • Prevent weakness and atrophy of muscles as a result of disuse
  • Increase the patient’s awareness of bursitis
  • Prevent/reduce impingement and further tissue damage
Treatment Justification
Advice and education Educate the patient about their condition and advise to avoid painful activities and the importance of relative rest of the shoulder Prevention of pain and impingement which delays the healing process
Educate the patient about the importance of correct posture Puts muscles in the optimal length tension relationship, reducing impingement
Manual therapy Grade 1 and 2 accessory mobilisations of the glenohumeral joint Has a neurophysiological effect reducing pain and improving synovial fluid flow, improving healing
Soft tissue massage Lengthens tight muscles and reduces muscle spasm
Therapeutic exercise Gentle pendulum range of motion exercises Maintenance of range of motion and prevention of adhesive capsulitis
Scapular exercises such as shoulder shrugs and shoulder retraction exercises Improve muscular control and scapular coordination
Centering of humeral head Helps to facilitate adequate muscle timing and recruitment
Stretching of tight muscles such as the levator scapula, pectoralis major, subscapularis and upper trapezius muscle To lengthen tight muscles which may improve scapulohumeral rhythm, posture and increase the subacromial space
Rotator cuff strengthening - isometric contractions in neutral and 30 degrees abduction Improves rotator cuff strength which is integral to the stability of the shoulder and functional activities
Electrophysical modalities Ice To reduce inflammation and pain elevate
Low intensity pulsed ultrasound 3 megaHz To reduce inflammation and facilitate healing
External physical aids May use head of humerus repositioning tape To maintain the head of humerus in its central position for optimal muscle recruitment

Middle / intermittentedit

Intermittent phase of physiotherapy rehabilitation
Goals of treatment
  • Improve muscle control
  • Improve scapulohumeral rhythm
  • Improve active and passive range of motion
  • Restore strength of scapular and rotator cuff muscles
Treatment Justification
Advice and education Advise the patient that they must perform all activities and exercises pain free To prevent reinjury and damage to the bursa
Manual therapy Grade 3 and 4 accessory mobilizations of the glenohumeral joint Improves range of motion and increases synovial fluid movement, improving healing
Proprioceptive neuromuscular facilitation PNF in functional diagonal patterns Strengthens muscles, improves motor control and scapulohumeral rhythm
Mobilization with movement eg caudal glide with active abduction Improves range of motion and decreases pain
Therapeutic exercise Specific muscle strengthening exercises especially for scapular stabilization serratus anterior, rhomboids and lower trapezius muscles eg strengthening lower trapezius muscle - bilateral external rotation using a theraband, strengthening of serratus anterior, punching with theraband resistance Improves stability during scapular motion which may decrease impingement of the bursa in the subacromial space
Active assisted range of motion - creeping the hand up the wall in abduction, scaption and flexion and door pulley manoeuvre Help to improve active range of motion and gravity assists with shoulder depression
Active internal and external rotator exercises with the use of a bar or a theraband Improves strength of rotator cuff and improves mobility in internal and external rotation
Electrophysical modalities Heat Improves muscle extensibility
Low intensity pulsed ultrasound 3 megaHz Facilitates healing
External physical aids May use head of humerus repositioning tape if necessary To maintain the head of humerus in its optimal position for optimal muscle recruitment

Late / return to functionedit

Return to function phase of physiotherapy rehabilitation
Goals of treatment
  • Return the patient to their previous level of function
  • Achieve full active and passive range of motion
Treatment Justification
Education and advice Education about the importance of a home based exercise program in the late stage of rehabilitation Ensures patient compliance
Correction of techniques performed Ensures that the correct target muscles are being used
Education to ensure that the patient performs activities and exercises within pain free limits This reduces the chance that the patient may work too hard and cause reinjury
Manual therapy PNF functional patterns with increasing resistance Continues to strengthen muscles, improves motor control and scapulohumeral rhythm
Therapeutic exercise Exercises specific for the patient’s functional needs eg functional reaching To improve the patients functional ability
Proprioception exercises eg Wall push ups with the hands resting on medicine balls or dura disks Improves proprioception important to reduce reinjury as return to function/sport
Strengthen the shoulder elevators – deltoid, flexors and also latissimus dorsi Important in this phase of the rehabilitation following strengthening of the shoulder depressors
Progress strengthening exercises to incorporate speed and load to make more functional Adding speed and load to exercises ensures that the patient is prepared for more functional tasks and activities
Electrophysical modalities Ice after exercise May assist to reduce any inflammation post exercise
External physical aids May use head of humerus repositioning tape if necessary May assist with return to function

Prognosisedit

In 1997 Morrison et al9 published a study that reviewed the cases of 616 patients 636 shoulders with impingement syndrome painful arc of motion to assess the outcome of non-surgical care An attempt was made to exclude patients who were suspected of having additional shoulder conditions such as, full-thickness tears of the rotator cuff, degenerative arthritis of the acromioclavicular joint, instability of the glenohumeral joint, or adhesive capsulitis All patients were managed with anti-inflammatory medication and a specific, supervised physical-therapy regimen The patients were followed up from six months to over six years They found that 67% 413 patients of the patients improved, while 28% did not improve and went to surgical treatment 5% did not improve and declined further treatment

Of the 413 patients who improved, 74 had a recurrence of symptoms during the observation period and their symptoms responded to rest or after resumption of the exercise program

The Morrison study shows that the outcome of impingement symptoms varies with patient characteristics Younger patients 20 years or less and patients between 41 and 60 years of age, fared better than those who were in the 21 to 40 years age group This may be related to the peak incidence of work, job requirements, sports and hobby related activities, that may place greater demands on the shoulder However, patients who were older than sixty years of age had the "poorest results" It is known that the rotator cuff and adjacent structures undergo degenerative changes with ageing

The authors were unable to posit an explanation for the observation of the bimodal distribution of satisfactory results with regard to age They concluded that it was "unclear why those who were twenty-one to forty years old had less satisfactory results" The poorer outcome for patients over 60 years old was thought to be potentially related to "undiagnosed full-thickness tears of the rotator cuff"9

Referencesedit

  1. ^ a b Salzman KL, Lillegard WA, Butcher JD 1997 "Upper extremity bursitis" Am Fam Physician 56 7: 1797–806, 1811–2 PMID 9371010 
  2. ^ Arcuni SE 2000 "Rotator cuff pathology and subacromial impingement" Nurse Pract 25 5: 58, 61, 65–6 passim PMID 10826138 doi:101097/00006205-200025050-00005 
  3. ^ a b c Bigliani LU, Levine WN 1997 "Subacromial impingement syndrome" J Bone Joint Surg Am 79 12: 1854–68 PMID 9409800 
  4. ^ a b Neer CS 1983 "Impingement lesions" Clin Orthop Relat Res 173: 70–7 PMID 6825348 
  5. ^ Park HB, Yokota A, Gill HS, El Rassi G, McFarland EG 2005 "Diagnostic accuracy of clinical tests for the different degrees of subacromial impingement syndrome" J Bone Joint Surg Am 87 7: 1446–55 PMID 15995110 doi:102106/JBJSD02335 
  6. ^ Jobe FW, Kvitne RS, Giangarra CE 1989 "Shoulder pain in the overhand or throwing athlete The relationship of anterior instability and rotator cuff impingement" Orthop Rev 18 9: 963–75 PMID 2797861 
  7. ^ a b Arend CF Ultrasound of the Shoulder Master Medical Books, 2013 Free chapter on ultrasound findings of subacromial-subdeltoid bursitis at ShoulderUScom
  8. ^ Blair B, Rokito AS, Cuomo F, Jarolem K, Zuckerman JD 1996 "Efficacy of injections of corticosteroids for subacromial impingement syndrome" J Bone Joint Surg Am 78 11: 1685–9 PMID 8934482 
  9. ^ a b Morrison DS, Frogameni AD, Woodworth P 1997 "Non-operative treatment of subacromial impingement syndrome" J Bone Joint Surg Am 79 5: 732–7 PMID 9160946 

External linksedit

  • Arend CF Ultrasound of the Shoulder Master Medical Books, 2013 Free chapter on bursae around the shoulder joint
  • Wilk, Kevin E; Andrews, James R 1994 The Athlete's shoulder Edinburgh: Churchill Livingstone ISBN 0-443-08847-0 
  • Blaine TA, Kim YS, Voloshin I, et al 2005 "The molecular pathophysiology of subacromial bursitis in rotator cuff disease" J Shoulder Elbow Surg 14 1 Suppl S: 84S–89S PMID 15726092 doi:101016/jjse200409022 
  • Brox JI, Gjengedal E, Uppheim G, et al 1999 "Arthroscopic surgery versus supervised exercises in patients with rotator cuff disease stage II impingement syndrome: a prospective, randomized, controlled study in 125 patients with a 2 1⁄2-year follow-up" J Shoulder Elbow Surg 8 2: 102–11 PMID 10226960 doi:101016/S1058-27469990001-0 
  • Butcher JD, Salzman KL, Lillegard WA 1996 "Lower extremity bursitis" Am Fam Physician 53 7: 2317–24 PMID 8638508 
  • Donatelli, Robert 2004 Physical therapy of the shoulder Edinburgh: Churchill Livingstone ISBN 0-443-06614-0 
  • Handa A, Gotoh M, Hamada K, et al 2003 "Vascular endothelial growth factor 121 and 165 in the subacromial bursa are involved in shoulder joint contracture in type II diabetics with rotator cuff disease" J Orthop Res 21 6: 1138–44 PMID 14554230 doi:101016/S0736-02660300102-5 
  • Hartley, Anne 1990 Practical joint assessment: a sports medicine manual St Louis, MO: Mosby Year Book ISBN 0-8016-2050-3 
  • editors 1994 Sports Medicine and Rehabilitation: A Sport-Specific Approach Hagerstown, MD: Lippincott Williams & Wilkins ISBN 1-56053-133-9 
  • Lo IK, Boorman R, Marchuk L, Hollinshead R, Hart DA, Frank CB 2005 "Matrix molecule mRNA levels in the bursa and rotator cuff of patients with full-thickness rotator cuff tears" Arthroscopy 21 6: 645–51 PMID 15944617 doi:101016/jarthro200503008 
  • Ishii H, Brunet JA, Welsh RP, Uhthoff HK 1997 ""Bursal reactions" in rotator cuff tearing, the impingement syndrome, and calcifying tendinitis" J Shoulder Elbow Surg 6 2: 131–6 PMID 9144600 doi:101016/S1058-27469790033-1 
  • McAfee JH, Smith DL 1988 "Olecranon and prepatellar bursitis Diagnosis and treatment" West J Med 149 5: 607–10 PMC 1026560  PMID 3074561 
  • Perry J 1983 "Anatomy and biomechanics of the shoulder in throwing, swimming, gymnastics, and tennis" Clin Sports Med 2 2: 247–70 PMID 9697636 
  • Reilly JP, Nicholas JA 1987 "The chronically inflamed bursa" Clin Sports Med 6 2: 345–70 PMID 3319205 Trojian T, Stevenson JH, Agrawal N 2005 "What can we expect from nonoperative treatment options for shoulder pain" J Fam Pract 54 3: 216–23 PMID 15755374 
  • Shamus, Jennifer; Shamus, Eric 2001 Sports injury: prevention & rehabilitation New York: McGraw-Hill Medical Pub Div ISBN 0-07-135475-1 
  • Starr M, Harbhajan K June 2001 "Recognition and Management of Common Forms of Tendinitis and Bursitis" PDF The Canadian Journal of Continuing Medical Education: 155–63 ISSN 0843-994X 
  • Trojian T, Stevenson JH, Agrawal N 2005 "What can we expect from nonoperative treatment options for shoulder pain" J Fam Pract 54 3: 216–23 PMID 15755374 
  • van Holsbeeck M, Strouse PJ 1993 "Sonography of the shoulder: evaluation of the subacromial-subdeltoid bursa" AJR Am J Roentgenol 160 3: 561–4 PMID 8430553 doi:102214/ajr16038430553 
  • Yanagisawa K, Hamada K, Gotoh M, et al 2001 "Vascular endothelial growth factor VEGF expression in the subacromial bursa is increased in patients with impingement syndrome" J Orthop Res 19 3: 448–55 PMID 11398859 doi:101016/S0736-02660090021-4 

References

Anderson, D, M, 2000, Dorland’s Illustrated Medical Dictionary, 29th ed, WB Saunders Company, Canada, 965-967

Buschbacher, R, M, Braddom, R, L 1994 Sports medicine & rehabilitation: A sport-specific approach Hanley and Belfus Inc, Philadelphia

Hartley, A 1990 Practical joint assessment: A sports medicine manual, St Louis, Sydney


subacromial bursitis, subacromial bursitis exercises, subacromial bursitis icd 10, subacromial bursitis injection, subacromial bursitis mri, subacromial bursitis pain, subacromial bursitis shoulder, subacromial bursitis symptoms, subacromial bursitis treatment, subacromial bursitis ultrasound


Subacromial bursitis Information about

Subacromial bursitis


  • user icon

    Subacromial bursitis beatiful post thanks!

    29.10.2014


Subacromial bursitis
Subacromial bursitis
Subacromial bursitis viewing the topic.
Subacromial bursitis what, Subacromial bursitis who, Subacromial bursitis explanation

There are excerpts from wikipedia on this article and video

Random Posts

The San Francisco Examiner

The San Francisco Examiner

The San Francisco Examiner is a longtime daily newspaper distributed in and around San Francisco, Ca...
Frederator Films

Frederator Films

Frederator Films is an animation studio founded by Fred Seibert as part of Frederator Studios, with ...
John Hasbrouck Van Vleck

John Hasbrouck Van Vleck

John Hasbrouck Van Vleck March 13, 1899 – October 27, 1980 was an American physicist and mathematici...
Christian Lacroix

Christian Lacroix

Christian Marie Marc Lacroix French pronunciation: ​kʁistjɑ̃ lakʁwa; born 16 May 1951 is a Fren...