Thu . 19 Oct 2019
TR | RU | UK | KK | BE |

Spatial organization

spatial organization, spatial organization in psychology
Spatial organization can be observed when components of an abiotic or biological group are arranged non-randomly in space Abiotic patterns, such as the ripple formations in sand dunes or the oscillating wave patterns of the Belousov-Zhabotinsky reaction emerge after thousands of particles interact millions of times On the other hand, individuals in biological groups may be arranged non-randomly due to selfish behavior, dominance interactions, or cooperative behavior W D Hamilton 1971 proposed that in a non-related "herd" of animals, spatial organization is likely a result of the selfish interests of individuals trying to acquire food or avoid predation On the other hand, spatial arrangements have also been observed among highly related members of eusocial groups, suggesting that the arrangement of individuals may provide some advantage for the group


  • 1 Spatial organization in eusocial insects
    • 11 Spatial organization in the nest
      • 111 "Foraging-for-work"
      • 112 Dominance hierarchy
    • 12 Spatial organization outside the nest
    • 13 Spatial organization as an emergent property of a self-organized system
  • 2 See also
  • 3 References

Spatial organization in eusocial insects

Spatial patterns exhibited by ants Temnothorax rugatulus can be determined after each individual is painted with a distinguishing mark

Individuals in a social insect colony can be spatially organized, or arranged non-randomly inside the nest These miniature territories, or spatial fidelity zones have been described in honey bees Apis mellifera, ants Odontomachus brunneus; Temnothorax albipennis; Pheidole dentata, and paper wasps Polistes dominulus, Ropalidia revolutionalis While residing in these zones, workers perform the task appropriate to the area they reside For example, individuals that remain in the center of an ant nest are more likely to feed larvae, whereas individuals found at the periphery of the nest are more likely to forage E O Wilson proposed that by remaining in small, non-random areas inside the nest, the distance an individual moves between tasks may be minimized, and overall colony efficiency would increase

Spatial organization in the nest


There are a variety of ways in which individuals can divide space inside a nest According to the “foraging-for-work” hypothesis, adult workers begin performing tasks in the area of the nest where they emerged, and gradually move towards the periphery of the nest as demands to perform particular tasks change This hypothesis is based on two observations: "1 that there is spatial structure in the layout of tasks in social insect colonies and 2 that workers first become adults in or around the center of the nest" Individuals can remain in an area for an extended period of time, as long as tasks need to be performed there Over time, an individual’s zone may shift as tasks are accomplished and workers search for other areas where tasks need to be performed Honey bees, for example, begin their adult life caring for brood located in the area near where they emerged ie nurse bees Eventually, workers move away from the brood rearing area and begin to perform other tasks, such as food storage, guarding, or foraging

Dominance hierarchy

The dominant paper wasp Polistes flavus remains in the center of the nest while subordinate wasps are often at the edge or off the nest

Space inside the nest may also be divided as a result of dominance interactions For example, in paper wasp colonies, a single inseminated queen may found initiate a colony after waking up from hibernation overwintering However, it is common in many species that multiple inseminated females join these foundresses instead of founding their own nest When multiple inseminated females found a colony together, the colony grows quickly, yet only one individual will become the primary egg-layer Through a series of dominance interactions, the most aggressive wasp will emerge as the dominant individual and will become the primary egg-layer for the group the prime role for ensuring your genes are passed on to subsequent generations, whereas the remaining subordinate wasps will perform other tasks, such as nest construction or foraging There is evidence that these dominance interactions affect the spatial zones individuals occupy as well In paper wasps Ropalidia revolutionalis, as well as in the ant species Odontomachus brunneus, dominant individuals are more likely to reside in the central areas of the nest, where they take care of brood, while the subordinate individuals are pushed towards the edge, where they are more likely to forage It is unknown whether division of space or establishment of dominance occurs first and if the other is a result of it

Spatial organization outside the nest

Bumble bees, Bombus impatiens individually marked with plastic number tags

There is also evidence that foragers, which are the insects that leave the nest to collect the valuable resources for the developing colony, can divide space outside the nest Makino & Sakai showed that bumble bee foragers maintain foraging zones in flower patches, which means that bees consistently return to the same areas within a patch and there is little overlap between individuals These zones can expand and contract when neighboring foragers are removed or introduced, respectively By dividing foraging patches into miniature ‘foraging territories’, individuals can maximize the number of flowers visited with minimal interruptions or competition between foragers These ‘foraging territories’ divided among individuals from the same colony are the result of self-organization among the foragers; that is, there is no lead forager dictating where the bees will forage Instead, the maintenance of these foraging zones is due to simple rules followed by each individual forager Studies to determine these “rules” are an important area of research in computer science, basic biology, behavioral ecology, and mathematic modeling

Spatial organization as an emergent property of a self-organized system

The self-organization observed in foraging territories is a microcosm for the self-organization seen in the entire colony Spatial organization observed across social insect colonies can be considered an emergent property of a self-organized complex system It is self-organized because there is no leader dictating where each individual will reside, nor which task an individual will perform once they get there Instead, zones may be a by-product of division of labor, whereby individuals end up in a particular location for a period of time based on the task they perform, or dominance interactions, whereby dominant individuals are granted access to the most desirable places inside the nest Spatial patterns exhibited by individuals of social insect colonies are not obvious, because it is difficult to observe and differentiate among individuals inside a nest cavity or flying across a foraging patch However, when careful attention is given to the individual worker, the spatial organization of workers in the nest becomes apparent

See also

  • Cellular automaton


  1. ^ Ball, P The Self-Made Tapestry: Pattern formation in nature Oxford: Oxford University Press ISBN 0-19-850244-3 
  2. ^ Hamilton, WD 1971 "Geometry for the selfish herd" Journal of Theoretical Biology 31 2: 295–311 doi:101016/0022-51937190189-5 PMID 5104951 
  3. ^ a b c Wilson, E O 1976 "Behavioral discretization and the number of castes in an ant species" Behavioral Ecology and Sociobiology 1 2: 141–154 doi:101007/BF00299195 
  4. ^ a b Seeley, T D 1982 "Adaptive significance of the age polyethism schedule in honeybee colonies" Behavioral Ecology and Sociobiology 11 4: 287–293 doi:101007/BF00299306 
  5. ^ a b c d Powell, S; Tschinkel, W R 1999 "Ritualized conflict in Odontomachus brunneus and the generation of interaction-based task allocation: a new organizational mechanism in ants" Animal Behaviour 58 5: 965–972 doi:101006/anbe19991238 PMID 10564598 
  6. ^ a b Sendova-Franks, A B; Franks, N R 1995 "Spatial relationships within nests of the ant Leptothorax unifasciatus Latr and their implications for the division of labour" Animal Behaviour 50: 121–136 doi:101006/anbe19950226 
  7. ^ Baracchi, D; Zaccaroni, M, Cervo R, Turillazzi S 2010 "Home Range Analysis in the Study of Spatial Organization on the Comb in the Paper Wasp Polistes Dominulus" Ethology 116 7: 579–587 doi:101111/j1439-0310201001770x  Cite uses deprecated parameter |coauthors= help
  8. ^ a b c Robson, SKA; Bean, K; Hansen, J; Norling, K; Rowe, RJ; White, D 2000 "Social and spatial organization in colonies of a primitively eusocial wasp Ropalidia revolutionalis de Saussure Hymenoptera: Vespidae" Aust J Entomol 39: 20–24 doi:101046/j1440-6055200000135x 
  9. ^ a b Franks, NR; Tofts, C 1994 "Foraging for work: how tasks allocate workers" Animal Behaviour 48 2: 470–472 doi:101006/anbe19941261 
  10. ^ Wilson, E O 1971 The Insect Societies Cambridge, MA: Harvard University Press 
  11. ^ West-Eberhard, M J 1969 "The social biology of Polistine wasps" Miscellaneous Publications Museum of Zoology, University of Michigan 140: 1–101 
  12. ^ Makino, TT; Sakai, S 2004 "Findings on spatial foraging patterns of bumblebees Bombus ignitus from a bee-tracking experiment in a net cage" Behav Ecol Sociobiol 56 2: 155–163 doi:101007/s00265-004-0773-x 
  13. ^ Makino, TT,; Sakai, S 2005 "Does interaction between bumblebees Bombus ignitus reduce their foraging area: Bee-removal experiments in a net cage" Behav Ecol Sociobiol 57 6: 617–622 doi:101007/s00265-004-0877-3 
  14. ^ Camazine, S; Deneubourg, J-L, Franks, N R, Sneyd, J, Theraulaz, G, & Bonabeau, E 2001 Self-Organization in Biological Systems Princeton: Princeton University Press  Cite uses deprecated parameter |coauthors= help

spatial organization, spatial organization affects visual perception, spatial organization examples, spatial organization geography, spatial organization in psychology, spatial organization in writing, spatial organization is usually used when, spatial organization meaning, spatial organization presentation, spatial organizational pattern

Spatial organization Information about

Spatial organization

  • user icon

    Spatial organization beatiful post thanks!


Spatial organization
Spatial organization
Spatial organization viewing the topic.
Spatial organization what, Spatial organization who, Spatial organization explanation

There are excerpts from wikipedia on this article and video

Random Posts

Timeline beyond October following the September 11 attacks

Timeline beyond October following the September 11 attacks

The following list contains certain dates beyond October 2001 involving the September 11 attacks ...
Smash Hits

Smash Hits

Smash Hits was a pop music magazine, aimed at teenagers and young adults and originally published in...
2014–15 USC Trojans women's basketball team

2014–15 USC Trojans women's basketball team

The 2014–15 USC Trojans women's basketball team will represent University of Southern California dur...
Trademark classification

Trademark classification

A trademark classification is a way the trademark examiners and applicants' trademark attorneys arra...