Multiplicity of infection
multiplicity of infection, multiplicity of infection calculationIn microbiology, the multiplicity of infection or MOI is the ratio of agents eg phage or more generally virus, bacteria to infection targets eg cell For example, when referring to a group of cells inoculated with virus particles, the multiplicity of infection or MOI is the ratio of the number of virus particles to the number of target cells present in a defined space
Contents
 1 Interpretation
 11 Examples
 2 See also
 3 References
Interpretation
The actual number of viruses or bacteria that will enter any given cell is a statistical process: some cells may absorb more than one infectious agent while others may not absorb any The probability that a cell will absorb n virus particles or bacteria when inoculated with an MOI of m can be calculated for a given population using a Poisson distribution This application of Poisson's distribution was applied and described by Ellis and Delbrück
P n = m n ⋅ e − m n ! \cdot e^}}}where m is the multiplicity of infection or MOI, n is the number of infectious agents that enter the infection target, and P n is the probability that an infection target a cell will get infected by n infectious agents
In fact the infectivity of the virus or bacteria in question will alter this relationship One way around this is to use a functional definition of infectious particles rather than a strict count, such as a plaque forming unit for viruses
For example, when an MOI of 1 1 viral particle per cell is used to infect a population of cells, the probability that a cell will not get infected is P 0 = 3679 % , and the probability that it be infected by a single particle is P 1 = 3679 % , by two particles is P 2 = 1839 % , by three particles is P 3 = 613 % , and so on
The average percentage of cells that will become infected as a result of inoculation with a given MOI can be obtained by realizing that it is simply P n > 0 = 1 − P 0 Hence, the average fraction of cells that will become infected following an inoculation with an MOI of m is given by:
P n > 0 = 1 − P n = 0 = 1 − m 0 ⋅ e − m 0 ! = 1 − e − m \cdot e^}}=1e^}which is approximately equal to m for small values of m ≪ 1
Examples
Percentage of cells infected based on MOIAs the MOI increases, the percentages of cells infected with at least one viral particle also increases
MOI  % Infected 

10  632% 
20  865% 
30  950% 
40  982% 
50  993% 
60  998% 
70  999% 
80  ~1000% 
See also
 LD50
 Infectious disease
References
 ^ Ellis, Emory; Delbruck, Max Jan 20, 1939 "The Growth of Bacteriophage" The Journal of General Physiology 22 3: 365–384 doi:101085/jgp223365 PMC 2141994 PMID 19873108
 ^ Fields BN, Knipe DM, Howley PM 2007 Fields virology: Part 1 Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins ISBN 9780781760607
multiplicity of infection, multiplicity of infection (moi), multiplicity of infection calculation, multiplicity of infection determination, multiplicity of infection distribution, multiplicity of infection equation, multiplicity of infection fields virology, multiplicity of infection o.35, multiplicity of infection protocol, multiplicity of infection viruses
Multiplicity of infection Information about

Multiplicity of infection beatiful post thanks!
29.10.2014
Multiplicity of infection
Multiplicity of infection
Multiplicity of infection viewing the topic.
There are excerpts from wikipedia on this article and video
Random Posts
Modern philosophy
Modern philosophy is a branch of philosophy that originated in Western Europe in the 17th century, a...Tim Shadbolt
Timothy Richard "Tim" Shadbolt born 19 February 1947 is a New Zealand politician He is the Mayor of ...HK Express
Andrew Cowen Deputy CEO Website wwwhkexpresscom HK Express Traditional Chinese 香港快運航空...List of shrinking cities in the United States
The following municipalities in the United States have lost at least 20% of their population, from a...Search Engine
Our site has a system which serves search engine function.
You can search all data in our system with above button which written "What did you look for? "
Welcome to our simple, stylish and fast search engine system.
We have prepared this method why you can reach most accurate and most up to date knowladge.
The search engine that developed for you transmits you to the latest and exact information with its basic and quick system.
You can find nearly everything data which found from internet with this system.
Random Posts
Ralph Neville, 2nd Earl of Westmorland
Ralph Neville, 2nd Earl of Westmorland 4 April 1406 – 3 November 1484 was an English peer Content...Mamprusi language
The Mamprusi language, Mampruli Mampelle, Ŋmampulli, is a Gur language spoken in northern Ghana by t...Singapore Changi Airport
Singapore Changi Airport IATA: SIN, ICAO: WSSS, or simply Changi Airport, is the primary civili...Christian Siriano
Christian Siriano born November 18, 1985 is an American fashion designer and member of the Council o...© Copyright © 2014. Search Engine