Hilbert's program
hilbert's program, partial realizations of hilbert's programIn mathematics, Hilbert's program, formulated by German mathematician David Hilbert, was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies As a solution, Hilbert proposed to ground all existing theories to a finite, complete set of axioms, and provide a proof that these axioms were consistent Hilbert proposed that the consistency of more complicated systems, such as real analysis, could be proven in terms of simpler systems Ultimately, the consistency of all of mathematics could be reduced to basic arithmetic
Gödel's incompleteness theorems, published in 1931, showed that Hilbert's program was unattainable for key areas of mathematics In his first theorem, Gödel showed that any consistent system with a computable set of axioms which is capable of expressing arithmetic can never be complete: it is possible to construct a statement that can be shown to be true, but that cannot be derived from the formal rules of the system In his second theorem, he showed that such a system could not prove its own consistency, so it certainly cannot be used to prove the consistency of anything stronger with certainty This refuted Hilbert's assumption that a finitistic system could be used to prove the consistency of itself, and therefore anything else
Contents
 1 Statement of Hilbert's Program
 2 Gödel's Incompleteness Theorems
 3 Hilbert's program after Gödel
 4 See also
 5 References
 6 External links
Statement of Hilbert's Program
The main goal of Hilbert's program was to provide secure foundations for all mathematics In particular this should include:
 A formalization of all mathematics; in other words all mathematical statements should be written in a precise formal language, and manipulated according to well defined rules
 Completeness: a proof that all true mathematical statements can be proved in the formalism
 Consistency: a proof that no contradiction can be obtained in the formalism of mathematics This consistency proof should preferably use only "finitistic" reasoning about finite mathematical objects
 Conservation: a proof that any result about "real objects" obtained using reasoning about "ideal objects" such as uncountable sets can be proved without using ideal objects
 Decidability: there should be an algorithm for deciding the truth or falsity of any mathematical statement
Gödel's Incompleteness Theorems
Main article: Gödel's incompleteness theoremsKurt Gödel showed that most of the goals of Hilbert's program were impossible to achieve, at least if interpreted in the most obvious way His second incompleteness theorem stated that any consistent theory powerful enough to encode addition and multiplication of integers cannot prove its own consistency This wipes out most of Hilbert's program as follows:
 It is not possible to formalize all of mathematics within arithmetic, as any attempt at such a formalism will omit some true mathematical statements this does not exclude the possibility of formalizing all mathematics with a nonarithmetic system
 An easy consequence of Gödel's incompleteness theorem is that there is no complete consistent extension of even Peano arithmetic with a recursively enumerable set of axioms, so in particular most interesting mathematical theories are not complete
 A theory such as Peano arithmetic cannot even prove its own consistency, so a restricted "finitistic" subset of it certainly cannot prove the consistency of more powerful theories such as set theory
 There is no algorithm to decide the truth or provability of statements in any consistent extension of Peano arithmetic Strictly speaking this result only appeared a few years after Gödel's theorem, because at the time the notion of an algorithm had not been precisely defined
Hilbert's program after Gödel
Many current lines of research in mathematical logic, proof theory and reverse mathematics can be viewed as natural continuations of Hilbert's original program Much of it can be salvaged by changing its goals slightly Zach 2005, and with the following modifications some of it was successfully completed:
 Although it is not possible to formalize all mathematics, it is possible to formalize essentially all the mathematics that anyone uses In particular Zermelo–Fraenkel set theory, combined with firstorder logic, gives a satisfactory and generally accepted formalism for almost all current mathematics
 Although it is not possible to prove completeness for systems at least as powerful as Peano arithmetic at least if they have a computable set of axioms, it is possible to prove forms of completeness for many other interesting systems The first big success was by Gödel himself before he proved the incompleteness theorems who proved the completeness theorem for firstorder logic, showing that any logical consequence of a series of axioms is provable An example of a nontrivial theory for which completeness has been proved is the theory of algebraically closed fields of given characteristic
 The question of whether there are finitary consistency proofs of strong theories is difficult to answer, mainly because there is no generally accepted definition of a "finitary proof" Most mathematicians in proof theory seem to regard finitary mathematics as being contained in Peano arithmetic, and in this case it is not possible to give finitary proofs of reasonably strong theories On the other hand, Gödel himself suggested the possibility of giving finitary consistency proofs using finitary methods that cannot be formalized in Peano arithmetic, so he seems to have had a more liberal view of what finitary methods might be allowed A few years later, Gentzen gave a consistency proof for Peano arithmetic The only part of this proof that was not clearly finitary was a certain transfinite induction up to the ordinal ε0 If this transfinite induction is accepted as a finitary method, then one can assert that there is a finitary proof of the consistency of Peano arithmetic More powerful subsets of second order arithmetic have been given consistency proofs by Gaisi Takeuti and others, and one can again debate about exactly how finitary or constructive these proofs are The theories that have been proved consistent by these methods are quite strong, and include most "ordinary" mathematics
 Although there is no algorithm for deciding the truth of statements in Peano arithmetic, there are many interesting and nontrivial theories for which such algorithms have been found For example, Tarski found an algorithm that can decide the truth of any statement in analytic geometry more precisely, he proved that the theory of real closed fields is decidable Given the Cantor–Dedekind axiom, this algorithm can be regarded as an algorithm to decide the truth of any statement in Euclidean geometry This is substantial as few people would consider Euclidean geometry a trivial theory
See also
 Grundlagen der Mathematik
 Foundational crisis of mathematics
 Atomism
References
 G Gentzen, 1936/1969 Die Widerspruchfreiheit der reinen Zahlentheorie Mathematische Annalen 112:493–565 Translated as 'The consistency of arithmetic', in The collected papers of Gerhard Gentzen, M E Szabo ed, 1969
 D Hilbert 'Die Grundlagen Der Elementaren Zahlentheorie' Mathematische Annalen 104:485–94 Translated by W Ewald as 'The Grounding of Elementary Number Theory', pp 266–273 in Mancosu ed, 1998 From Brouwer to Hilbert: The debate on the foundations of mathematics in the 1920s, Oxford University Press New York
 SG Simpson, 1988 Partial realizations of Hilbert's program Journal of Symbolic Logic 53:349–363
 R Zach, 2005 Hilbert's Program Then and Now Manuscript, arXiv:math/0508572v1
External links
 Entry on Hilbert's program by Richard Zach at the Stanford Encyclopedia of Philosophy



Topics and concepts 

Proposals and implementations 

In fiction 
See also: Logic machines in fiction and List of fictional computers 
hilbert's program, hilbert's programme, partial realizations of hilbert's program
Hilbert's program Information about

Hilbert's program beatiful post thanks!
29.10.2014
Hilbert's program
Hilbert's program
Hilbert's program viewing the topic.
There are excerpts from wikipedia on this article and video
Random Posts
La Porte, Indiana
La Porte French for "The Door" is a city in LaPorte County, Indiana, United States, of which it is t...Fernando Montes de Oca Fencing Hall
The Fernando Montes de Oca Fencing Hall is an indoor sports venue located in the Magdalena Mixhuca S...My Everything (The Grace song)
"My Everything" was Grace's 3rd single under the SM Entertainment, released on November 6, 2006 Unli...Turkish Straits
The Turkish Straits Turkish: Türk Boğazları are a series of internationally significant waterways in...Search Engine
Our site has a system which serves search engine function.
You can search all data in our system with above button which written "What did you look for? "
Welcome to our simple, stylish and fast search engine system.
We have prepared this method why you can reach most accurate and most up to date knowladge.
The search engine that developed for you transmits you to the latest and exact information with its basic and quick system.
You can find nearly everything data which found from internet with this system.
Random Posts
Timeline beyond October following the September 11 attacks
The following list contains certain dates beyond October 2001 involving the September 11 attacks ...Smash Hits
Smash Hits was a pop music magazine, aimed at teenagers and young adults and originally published in...2014–15 USC Trojans women's basketball team
The 2014–15 USC Trojans women's basketball team will represent University of Southern California dur...Trademark classification
A trademark classification is a way the trademark examiners and applicants' trademark attorneys arra...© Copyright © 2014. Search Engine