Tue . 20 Jul 2020
TR | RU | UK | KK | BE |


granzyme b, granzyme b staining
Granzymes are serine proteases that are released by cytoplasmic granules within cytotoxic T cells and natural killer NK cells They induce programmed cell death in the target cell, thus eliminating cells that have become cancerous or are infected with viruses or bacteria The granzymes also kill bacteria and inhibit viral replication In NK cells and T cells, the granzymes are packaged in cytotoxic granules with perforin Other locations that granzymes can be detected are in the rough endoplasmic reticulum, golgi complex, and the trans-golgi reticulum The contents of the cytotoxic granules function to permit entry of the granzymes into the target cell cytosol The granules are released into an immune synapse formed with a target cell, where perforin mediates the delivery of the granzymes into endosomes in the target cell, and finally into the target cell cytosol Granzymes are identified as being part of the serine esterase family They are closely related to other immune serine proteases expressed by innate immune cells, such as neutrophil elastase and cathepsin G

Granzyme B activates apoptosis by activating caspases especially caspase-3, which cleaves many substrates, including caspase-activated DNase to execute cell death Granzyme B also cleaves the protein Bid, which recruits the proteins Bax and Bak to change the membrane permeability of the mitochondria, causing the release of cytochrome c which is one of the parts needed to activate caspase-9 via the apoptosome, Smac/Diablo and Omi/HtrA2 which suppress the inhibitor of apoptosis proteins IAPs, among other proteins Granzyme B also cleaves many of the proteins responsible for apoptosis in the absence of caspase activity The other granzymes activate cell death by caspase-dependent and caspase-independent mechanisms

In addition to killing their target cells, granzymes can target and kill intracellular pathogens Granzymes A and B induce lethal oxidative damage in bacteria by cleaving components of the electron transport chain, while granzyme B cleaves viral proteins to inhibit viral activation and replication The granzymes bind directly to the nucleic acids DNA and RNA; this enhances their cleavage of nucleic acid binding proteins

More recently, in addition to T lymphocytes, granzymes have been shown to be expressed in other types of immune cells such as dendritic cells, B cells and mast cells In addition, granzymes may also be expressed in non-immune cells such as keratinocytes, pneumocytes and chondrocytes As many of these cell types either do not express perforin or do not form immunological synapses, granzyme B is released extracellularly Extracellular granzyme B can accumulate in the extracellular space in diseases associated with dysregulated or chronic inflammation leading to the degradation of extracellular matrix proteins and impaired tissue healing and remodelling Extracellular granzyme B has been implicated in the pathogenesis of atherosclerosis, aneurysm, vascular leakage, chronic wound healing, and skin aging


  • 1 History
  • 2 Other Granzyme Functions
  • 3 Granzymes in Cancer research
  • 4 Genes
  • 5 References


In 1986 Jürg Tschopp and his group published a paper on their discovery of granzymes In the paper they discussed how they purified, characterized and discovered a variety of granzymes found within cytolytic granules that were carried by cytotoxic T lymphocytes and natural killer cells Jürg was able to identify 8 different granzymes and discovered partial amino acid sequences for each The molecules were unofficially named Grs for five years before Jürg and his team came up with the name granzymes which was widely accepted by the scientific community

Granzyme secretion can be detected and measured using Western Blot or ELISA techniques Granzyme secreting cells can be identified and quantified by flow cytometry or ELISPOT Alternatively, granzyme activity can be assayed by virtue of their protease activity

Other Granzyme Functions

In Cullen's paper “Granzymes in Cancer and Immunity” he discusses how granzyme A has been known to be found in elevated levels within patients who currently have an infectious disease and/or in a pro-inflammatory state Granzymes have also been found to help initiate the inflammatory response “For example, rheumatoid arthritis patients have increased levels of granzyme A in the synovial fluid of swollen joints” When granzymes are in an extracellular state they have the ability to activate macrophages and mast cells to initiate the inflammatory response The interaction between the granzymes and somatic cells are still unexplainable but advances in understanding the process are being made constantly Other granzymes like granzyme K have been found in high levels of patients who have gone septic Granzyme H has been found to have a direct correlation with patients who have a viral infection Scientists are able to conclude that granzyme H specializes in detecting ‘proteolytic degradation’ which is found in viral proteins

Cullen further states in his paper that granzymes may have a role in immunomodulation, or the job of maintaining homeostasis in the immune system during an infection “In humans, loss of perforin function leads to a syndrome called familial hemophagocytic lymphohistiocytosis ” This syndrome can lead to death because both T cells and macrophages grown to fight the pathogen This growth leads to inflammation of vital organs and can potentially lead to death

In Trapani’s paper he talks about how granzymes may have other functions, in addition to their ability to fight off infection Granzyme A contains certain chemicals that allow it to cause proliferation in B cells to reduce the chance of cancer growth and formation Test on mice have shown that granzyme A and B might not have a direct link to controlling viral infections, but helping accelerate the immune systems response

Granzymes in Cancer research

In Cullen's paper “Granzymes in Cancer and Immunity” he describes the process of “immune surveillance the process whereby precancerous and malignant cells are recognized by the immune system as damaged and are consequently targeted for elimination” For a tumor to progress it requires conditions within the body and surrounding area to be growth-promoting Almost all people have suitable immune cells to fight off tumors in the body Studies have shown that the immune system even has the ability to prevent precancerous cells from growing and arbitrate the regression of established tumors The dangerous thing about cancer cells is they have the ability to inhibit the function of the immune system Although a tumor may be in its beginning stage and very weak, it may be giving off chemicals that inhibit the function of the immune system allowing it to grow and become harmful Tests have shown that mice without granzymes and perforins are at high risk to have tumors spread throughout their body

Tumors have the ability to escape from immune surveillance by secreting immunosuppressive TGF-β This inhibits proliferation and activation of T cells TGF-β production is the most potent mechanism of immune avoidance used by tumors TGF-β inhibits expression of five different cytotoxic genes including perforin, granzyme A, and granzyme B, which then inhibits T cell-mediated tumor clearance

Perforin’s role in protecting the body against lymphoma was emphasized when scientists discovered that p53 did not have as big of a role in lymphoma surveillance as its counterpart perforin Perforin and granzymes have been found to have a directly related ability to protect the body against the formation of different kinds of lymphomas


  • GZMA
  • GZMB
  • GZMH
  • GZMK
  • GZMM


  1. ^ a b Bots M, Medema JP December 2006 "Granzymes at a glance" Journal of Cell Science 119 Pt 24: 5011–4 doi:101242/jcs03239 PMID 17158907 
  2. ^ a b Walch M, Dotiwala F, Mulik S, et al June 2014 "Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes" Cell 157 6: 1309–23 doi:101016/jcell201403062 PMC 4090916  PMID 24906149 
  3. ^ Peters PJ, Borst J, Oorschot V, et al May 1991 "Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes" The Journal of Experimental Medicine 173 5: 1099–109 doi:101084/jem17351099 PMC 2118839  PMID 2022921 
  4. ^ a b Thomas MP, Whangbo J, McCrossan G, et al June 2014 "Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins" Journal of Immunology 192 11: 5390–7 doi:104049/jimmunol1303296 PMC 4041364  PMID 24771851 
  5. ^ Marcet-Palacios M, Duggan BL, Shostak I, et al December 2011 "Granzyme B inhibits vaccinia virus production through proteolytic cleavage of eukaryotic initiation factor 4 gamma 3" PLoS Pathogens 7 12: e1002447 doi:101371/journalppat1002447 PMC 3240606  PMID 22194691 
  6. ^ Hendel A, Hiebert PR, Boivin WA, Williams SJ, Granville DJ April 2010 "Granzymes in age-related cardiovascular and pulmonary diseases" Cell Death and Differentiation 17 4: 596–606 doi:101038/cdd20105 PMID 20139894 
  7. ^ Hiebert PR, Granville DJ December 2012 "Granzyme B in injury, inflammation, and repair" Trends in Molecular Medicine 18 12: 732–41 doi:101016/jmolmed201209009 PMID 23099058 
  8. ^ Hiebert PR, Boivin WA, Zhao H, McManus BM, Granville DJ 2013 "Perforin and granzyme B have separate and distinct roles during atherosclerotic plaque development in apolipoprotein E knockout mice" PLOS ONE 8 10: e78939 doi:101371/journalpone0078939 PMC 3811993  PMID 24205352 
  9. ^ Chamberlain CM, Ang LS, Boivin WA, et al February 2010 "Perforin-independent extracellular granzyme B activity contributes to abdominal aortic aneurysm" The American Journal of Pathology 176 2: 1038–49 doi:102353/ajpath2010090700 PMC 2808106  PMID 20035050 
  10. ^ a b Hsu I, Parkinson LG, Shen Y, et al 2014 "Serpina3n accelerates tissue repair in a diabetic mouse model of delayed wound healing" Cell Death & Disease 5: e1458 doi:101038/cddis2014423 PMC 4237249  PMID 25299783 
  11. ^ Hendel A, Hsu I, Granville DJ July 2014 "Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability" Laboratory Investigation 94 7: 716–25 doi:101038/labinvest201462 PMC 4074428  PMID 24791744 
  12. ^ Hiebert PR, Wu D, Granville DJ October 2013 "Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice" Cell Death and Differentiation 20 10: 1404–14 doi:101038/cdd201396 PMC 3770318  PMID 23912712 
  13. ^ Hiebert PR, Boivin WA, Abraham T, Pazooki S, Zhao H, Granville DJ June 2011 "Granzyme B contributes to extracellular matrix remodeling and skin aging in apolipoprotein E knockout mice" Experimental Gerontology 46 6: 489–99 doi:101016/jexger201102004 PMID 21316440 
  14. ^ Ewen CL, Kane KP, Bleackley RC January 2012 "A quarter century of granzymes" Cell Death and Differentiation 19 1: 28–35 doi:101038/cdd2011153 PMC 3252830  PMID 22052191 
  15. ^ a b c d e f Cullen SP, Brunet M, Martin SJ April 2010 "Granzymes in cancer and immunity" Cell Death and Differentiation 17 4: 616–23 doi:101038/cdd2009206 PMID 20075940 
  16. ^ Trapani JA 2001 "Granzymes: a family of lymphocyte granule serine proteases" Genome Biology 2 12: REVIEWS3014 doi:101186/gb-2001-2-12-reviews3014 PMC 138995  PMID 11790262 
  • Molecular and Cellular Biology portal

granzyme a, granzyme and perforin, granzyme b, granzyme b antibody, granzyme b inhibitor, granzyme b staining, granzyme by mouse cd+8 tem, granzyme c, granzyme ihc, granzyme perforin ihc

Granzyme Information about


  • user icon

    Granzyme beatiful post thanks!


Granzyme viewing the topic.
Granzyme what, Granzyme who, Granzyme explanation

There are excerpts from wikipedia on this article and video

Random Posts

B♭ (musical note)

B♭ (musical note)

B♭ B-flat; also called si bémol is the eleventh step of the Western chromatic scale starting from C ...
Fourth dimension in art

Fourth dimension in art

New possibilities opened up by the concept of four-dimensional space and difficulties involved in tr...
Holt Renfrew

Holt Renfrew

Holt, Renfrew & Co, Limited, commonly known as Holt Renfrew or Holt's,1 is a chain of high-end C...
Later Silla

Later Silla

Later Silla 668–935, Hangul: 후신라; Hanja: 後新羅; RR: Hushila, Korean pronunciation: ...