Tue . 20 Jul 2020
TR | RU | UK | KK | BE |

Field effect (semiconductor)

field effect semiconductor companies, field effect semiconductor news
In physics, the field effect refers to the modulation of the electrical conductivity of a material by the application of an external electric field

In a metal, the electron density that responds to applied fields is so large that an external electric field can penetrate only a very short distance into the material However, in a semiconductor the lower density of electrons and possibly holes that can respond to an applied field is sufficiently small that the field can penetrate quite far into the material This field penetration alters the conductivity of the semiconductor near its surface, and is called the field effect The field effect underlies the operation of the Schottky diode and of field-effect transistors, notably the MOSFET, the JFET and the MESFET[1]


  • 1 Surface conductance and band bending
    • 11 Bulk region
    • 12 Surface region
    • 13 Inversion
  • 2 References

Surface conductance and band bending

The change in surface conductance occurs because the applied field alters the energy levels available to electrons to considerable depths from the surface, and that in turn changes the occupancy of the energy levels in the surface region A typical treatment of such effects is based upon a band-bending diagram showing the positions in energy of the band edges as a function of depth into the material

An example band-bending diagram is shown in the figure For convenience, energy is expressed in eV and voltage is expressed in volts, avoiding the need for a factor q for the elementary charge In the figure, a two-layer structure is shown, consisting of an insulator as left-hand layer and a semiconductor as right-hand layer An example of such a structure is the MOS capacitor, a two-terminal structure made up of a metal gate contact, a semiconductor body such as silicon with a body contact, and an intervening insulating layer such as silicon dioxide, hence the designation O The left panels show the lowest energy level of the conduction band and the highest energy level of the valence band These levels are "bent" by the application of a positive voltage V By convention, the energy of electrons is shown, so a positive voltage penetrating the surface lowers the conduction edge A dashed line depicts the occupancy situation: below this Fermi level the states are more likely to be occupied, the conduction band moves closer to the Fermi level, indicating more electrons are in the conducting band near the insulator

Bulk region

The example in the figure shows the Fermi level in the bulk material beyond the range of the applied field as lying close to the valence band edge This position for the occupancy level is arranged by introducing impurities into the semiconductor In this case the impurities are so-called acceptors which soak up electrons from the valence band becoming negatively charged, immobile ions embedded in the semiconductor material The removed electrons are drawn from the valence band levels, leaving vacancies or holes in the valence band Charge neutrality prevails in the field-free region because a negative acceptor ion creates a positive deficiency in the host material: a hole is the absence of an electron, it behaves like a positive charge Where no field is present, neutrality is achieved because the negative acceptor ions exactly balance the positive holes

Surface region

Next the band bending is described A positive charge is placed on the left face of the insulator for example using a metal "gate" electrode In the insulator there are no charges so the electric field is constant, leading to a linear change of voltage in this material As a result, the insulator conduction and valence bands are therefore straight lines in the figure, separated by the large insulator energy gap

In the semiconductor at the smaller voltage shown in the top panel, the positive charge placed on the left face of the insulator lowers the energy of the valence band edge Consequently, these states are fully occupied out to a so-called depletion depth where the bulk occupancy reestablishes itself because the field cannot penetrate further Because the valence band levels near the surface are fully occupied due to the lowering of these levels, only the immobile negative acceptor-ion charges are present near the surface, which becomes an electrically insulating region without holes the depletion layer Thus, field penetration is arrested when the exposed negative acceptor ion charge balances the positive charge placed on the insulator surface: the depletion layer adjusts its depth enough to make the net negative acceptor ion charge balance the positive charge on the gate


The conduction band edge also is lowered, increasing electron occupancy of these states, but at low voltages this increase is not significant At larger applied voltages, however, as in the bottom panel, the conduction band edge is lowered sufficiently to cause significant population of these levels in a narrow surface layer, called an inversion layer because the electrons are opposite in polarity to the holes originally populating the semiconductor This onset of electron charge in the inversion layer becomes very significant at an applied threshold voltage, and once the applied voltage exceeds this value charge neutrality is achieved almost entirely by addition of electrons to the inversion layer rather than by an increase in acceptor ion charge by expansion of the depletion layer Further field penetration into the semiconductor is arrested at this point, as the electron density increases exponentially with band-bending beyond the threshold voltage, effectively pinning the depletion layer depth at its value at threshold voltages


  1. ^ The acronyms stand for Metal Oxide Semiconductor Field Effect Transistor, Junction Field Effect Transistor, and MEtal Semiconductor Field Effect Transistor For a discussion see, for example, M K Achuthan K N Bhat 2007 "Chapter 10: Metal semiconductor contacts: Metal semiconductor and junction field effect transistors" Fundamentals of semiconductor devices Tata McGraw-Hill pp 475 ff ISBN 007061220X 

This article incorporates material from the Citizendium article "Field effect#Field effect", which is licensed under the Creative Commons Attribution-ShareAlike 30 Unported License but not under the GFDL

field effect semiconductor companies, field effect semiconductor devices, field effect semiconductor etf, field effect semiconductor news

Field effect (semiconductor) Information about

Field effect (semiconductor)

  • user icon

    Field effect (semiconductor) beatiful post thanks!


Field effect (semiconductor)
Field effect (semiconductor)
Field effect (semiconductor) viewing the topic.
Field effect (semiconductor) what, Field effect (semiconductor) who, Field effect (semiconductor) explanation

There are excerpts from wikipedia on this article and video

Random Posts



A book is a set of written, printed, illustrated, or blank sheets, made of ink, paper, parchment, or...
Boston Renegades

Boston Renegades

Boston Renegades was an American women’s soccer team, founded in 2003 The team was a member of the U...
Sa Caleta Phoenician Settlement

Sa Caleta Phoenician Settlement

Sa Caleta Phoenician Settlement can be found on a rocky headland about 10 kilometers west of Ibiza T...


Bodybuildingcom is an American online retailer based in Boise, Idaho, specializing in dietary supple...