Tue . 20 Jan 2020
TR | RU | UK | KK | BE |

Colonization of the Moon

history of the moon, colonization of the moon
The colonization of the Moon is a proposed establishment of permanent human communities or robotic industries12 on the Moon

Discovery of lunar water at the lunar poles by Chandrayaan-1 has renewed interest in the Moon Polar colonies could also avoid the problem of long lunar nights – about 354 hours,3 a little more than two weeks – and take advantage of the Sun continuously, at least during the local summer there is no data for the winter yet4

Permanent human habitation on a planetary body other than the Earth is one of science fiction's most prevalent themes As technology has advanced, and concerns about the future of humanity on Earth have increased, the argument that space colonization is an achievable and worthwhile goal has gained momentum56 Because of its proximity to Earth, the Moon has been seen as the most obvious natural expansion after Earth There are also various projects in near future by space tourism startup companies for tourism on the Moon


  • 1 Proposals
    • 11 Project Horizon
    • 12 Lunex Project
    • 13 Sub-surface base
    • 14 Recent proposals
  • 2 Moon exploration
    • 21 Water discovered on Moon
  • 3 Advantages and disadvantages
  • 4 Locations
    • 41 Polar regions
    • 42 Equatorial regions
    • 43 Far side
    • 44 Lunar lava tubes
  • 5 Structure
    • 51 Habitat
      • 511 Underground colonies
      • 512 Surface colonies
    • 52 Moon Capital
    • 53 3D printed structures
  • 6 Energy
    • 61 Nuclear power
    • 62 Solar energy
    • 63 Energy storage
  • 7 Transport
    • 71 Earth to Moon
    • 72 On the surface
    • 73 Surface to space
      • 731 Launch technology
      • 732 Launch costs
    • 74 Surface to and from cis-Lunar space
  • 8 Economic development
    • 81 Space-based materials processing
    • 82 Exporting material to Earth
    • 83 Exporting propellant obtained from lunar water
    • 84 Solar power satellites
  • 9 See also
  • 10 References
  • 11 Further reading
  • 12 External links


Project Horizonedit

Main article: Project Horizon

Project Horizon was a 1959 study regarding the United States Army's plan to establish a fort on the Moon by 196711 Heinz-Hermann Koelle, a German rocket engineer of the Army Ballistic Missile Agency ABMA led the Project Horizon study It was proposed that the first landing would be carried out by two "soldier-astronauts" in 1965 and that more construction workers would soon follow It was posited that through numerous launches 61 Saturn I and 88 Saturn II, 245 tons of cargo could be transported to the outpost by 1966

Lunex Projectedit

Main article: Lunex Project

Lunex Project was a US Air Force plan for a manned lunar landing prior to the Apollo Program in 1961 It envisaged a 21-airman underground Air Force base on the Moon by 1968 at a total cost of $75 billion

Sub-surface baseedit

In 1962, John DeNike and Stanley Zahn published their idea of a sub-surface base located at the Sea of Tranquility9 This base would house a crew of 21, in modules placed four meters below the surface, which was believed to provide radiation shielding on par with Earth's atmosphere DeNike and Zahn favored nuclear reactors for energy production, because they were more efficient than solar panels, and would also overcome the problems with the long lunar nights For the life support system, an algae-based gas exchanger was proposed

Recent proposalsedit

As of 2006, Japan planned to have a Moon base in 203012 and as of 2007, Russia planned to have a Moon base in 2027–3213

In 2007 Jim Burke of the International Space University in France said people should plan to preserve humanity's culture in the event of a civilization-stopping asteroid impact with Earth A Lunar Noah's Ark was proposed14 Subsequent planning may be taken up by the International Lunar Exploration Working Group ILEWG151617

In a January 2012 speech Newt Gingrich, Republican candidate for President of the United States of America, proposed a plan to build a US moon colony by the year 20201819

In 2016 Johann-Dietrich Wörner, the new Chief of ESA, proposed the International Moon Village that incorporates 3D printing20

Moon explorationedit

Main articles: Exploration of the Moon and List of missions to the Moon

Exploration of the lunar surface by spacecraft began in 1959 with the Soviet Union's Luna program Luna 1 missed the Moon, but Luna 2 made a hard landing impact into its surface, and became the first artificial object on an extraterrestrial body The same year, the Luna 3 mission radioed photographs to Earth of the Moon's hitherto unseen far side, marking the beginning of a decade-long series of unmanned Lunar explorations

Responding to the Soviet program of space exploration, US President John F Kennedy in 1961 told the US Congress on May 25: "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth" The same year the Soviet leadership made some of its first public pronouncements about landing a man on the Moon and establishing a Lunar base

Manned exploration of the lunar surface began in 1968 when the Apollo 8 spacecraft orbited the Moon with three astronauts on board This was mankind's first direct view of the far side The following year, the Apollo 11 Lunar module landed two astronauts on the Moon, proving the ability of humans to travel to the Moon, perform scientific research work there, and bring back sample materials

Additional missions to the Moon continued this exploration phase In 1969 the Apollo 12 mission landed next to the Surveyor 3 spacecraft, demonstrating precision landing capability The use of a manned vehicle on the Moon's surface was demonstrated in 1971 with the Lunar Rover during Apollo 15 Apollo 16 made the first landing within the rugged Lunar highlands However, interest in further exploration of the Moon was beginning to wane among the American public In 1972 Apollo 17 was the final Apollo Lunar mission, and further planned missions were scrapped at the directive of President Nixon Instead, focus was turned to the Space Shuttle and manned missions in near Earth orbit

In addition to its scientific returns, the Apollo program also provided valuable lessons about living and working in the lunar environment21

The Soviet manned lunar programs failed to send a manned mission to the Moon However, in 1966 Luna 9 was the first probe to achieve a soft landing and return close-up shots of the Lunar surface Luna 16 in 1970 returned the first Soviet Lunar soil samples, while in 1970 and 1973 during the Lunokhod program two robotic rovers landed on the Moon Lunokhod 1 explored the Lunar surface for 322 days, and Lunokhod 2 operated on the Moon about four months only but covered a third more distance 1974 saw the end of the Soviet Moonshot, two years after the last American manned landing Besides the manned landings, an abandoned Soviet moon program included building the moonbase "Zvezda", which was the first detailed project with developed mockups of expedition vehicles22 and surface modules23

In the decades following, interest in exploring the Moon faded considerably, and only a few dedicated enthusiasts supported a return However, evidence of Lunar ice at the poles gathered by NASA's Clementine 1994 and Lunar Prospector 1998 missions rekindled some discussion,2425 as did the potential growth of a Chinese space program that contemplated its own mission to the Moon26 Subsequent research suggested that there was far less ice present if any than had originally been thought, but that there may still be some usable deposits of hydrogen in other forms27 However, in September 2009, the Chandrayaan probe of India, carrying an ISRO instrument, discovered that the Lunar regolith contains 01% water by weight, overturning theories that had stood for 40 years28

In 2004, US President George W Bush called for a plan to return manned missions to the Moon by 2020 since cancelled – see Constellation program Propelled by this new initiative, NASA issued a new long-range plan that includes building a base on the Moon as a staging point to Mars This plan envisions a Lunar outpost at one of the Moon's poles by 2024 which, if well-sited, might be able to continually harness solar power; at the poles, temperature changes over the course of a Lunar day are also less extreme,29 and reserves of water and useful minerals may be found nearby29 In addition, the European Space Agency has a plan for a permanently manned Lunar base by 20253031 Russia has also announced similar plans to send a man to the Moon by 2025 and establish a permanent base there several years later6

A Chinese space scientist has said that the People's Republic of China could be capable of landing a human on the Moon by 2022 see Chinese Lunar Exploration Program,32 and Japan and India also have plans for a Lunar base by 203033 Neither of these plans involves permanent residents on the Moon Instead they call for sortie missions, in some cases followed by extended expeditions to the Lunar base by rotating crew members, as is currently done for the International Space Station

NASA’s LCROSS/LRO mission had been scheduled to launch in October 200834 The launch was delayed until 18 June 2009,35 resulting in LCROSS's impact with the Moon at 11:30 UT on 9 October 20093637 The purpose is preparing for future Lunar exploration

Water discovered on Moonedit

Main article: Lunar water Play media Beginning with a full-frame Moon in this video, the camera flies to the lunar south pole and shows areas of permanent shadow Realistic shadows evolve through several months

On 24 September 2009 Science magazine reported that the Moon Mineralogy Mapper M3 on the Indian Space Research Organisation's ISRO Chandrayaan-1 had detected water on the Moon38 M3 detected absorption features near 28–30 µm 000011–000012 in on the surface of the Moon For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer H abundance data suggests that the formation and retention of OH and H2O is an ongoing surficial process OH/H2O production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration

The Moon Mineralogy Mapper M3, an imaging spectrometer, was one of the 11 instruments on board Chandrayaan-1, whose mission came to a premature end on 29 August 200939 M3 was aimed at providing the first mineral map of the entire lunar surface

Lunar scientists had discussed the possibility of water repositories for decades They are now increasingly "confident that the decades-long debate is over" a report says "The Moon, in fact, has water in all sorts of places; not just locked up in minerals, but scattered throughout the broken-up surface, and, potentially, in blocks or sheets of ice at depth" The results from the Chandrayaan mission are also "offering a wide array of watery signals"4041

On November 13, 2009 NASA announced that the LCROSS mission had discovered large quantities of water ice on the Moon around the LCROSS impact site at Cabeus Robert Zubrin, president of the Mars Society, relativized the term 'large': "The 30 m crater ejected by the probe contained 10 million kilograms of regolith Within this ejecta, an estimated 100 kg of water was detected That represents a proportion of ten parts per million, which is a lower water concentration than that found in the soil of the driest deserts of the Earth In contrast, we have found continent sized regions on Mars, which are 600,000 parts per million, or 60% water by weight"42 Although the Moon is very dry on the whole, the spot where the LCROSS impactor hit was chosen for a high concentration of water ice Dr Zubrin's computations are not a sound basis for estimating the percentage of water in the regolith at that site Researchers with expertise in that area estimated that the regolith at the impact site contained 56 ± 29% water ice, and also noted the presence of other volatile substances Hydrocarbons, material containing sulfur, carbon dioxide, carbon monoxide, methane and ammonia were present43

In March 2010, NASA reported that the findings of its mini-SAR radar aboard Chandrayaan-1 were consistent with ice deposits at the Moon's north pole It is estimated there is at least 600 million tons of ice at the north pole in sheets of relatively pure ice at least a couple of meters thick44

In March 2014, researchers who had previously published reports on possible abundance of water on the Moon, reported new findings that refined their predictions substantially lower45

Advantages and disadvantagesedit

For more details on this topic, see space colonization

Placing a colony on a natural body would provide an ample source of material for construction and other uses in space, including shielding from cosmic radiation The energy required to send objects from the Moon to space is much less than from Earth to space This could allow the Moon to serve as a source of construction materials within cis-lunar space Rockets launched from the Moon would require less locally produced propellant than rockets launched from Earth Some proposals include using electric acceleration devices mass drivers to propel objects off the Moon without building rockets Others have proposed momentum exchange tethers see below Furthermore, the Moon does have some gravity, which experience to date indicates may be vital for fetal development and long-term human health4647 Whether the Moon's gravity roughly one sixth of Earth's is adequate for this purpose, however, is uncertain

In addition, the Moon is the closest large body in the Solar System to Earth While some Earth-crosser asteroids occasionally pass closer, the Moon's distance is consistently within a small range close to 384,400 km This proximity has several advantages:

  • A lunar base could be a site for launching rockets with locally manufactured fuel to distant planets such as Mars Launching rockets from the Moon would be easier than from Earth because the Moon's gravity is lower, requiring a lower escape velocity A lower escape velocity would require less propellant, but there is no guarantee that less propellant would cost less money than that required to launch from Earth
  • The energy required to send objects from Earth to the Moon is lower than for most other bodies
  • Transit time is short The Apollo astronauts made the trip in three days and future technologies could improve on this time
  • The short transit time would also allow emergency supplies to quickly reach a Moon colony from Earth, or allow a human crew to evacuate relatively quickly from the Moon to Earth in case of emergency This could be an important consideration when establishing the first human colony
  • If the Moon were colonized then it could be tested if humans can survive in low gravity Those results could be utilized for a viable Mars colony as well
  • The round trip communication delay to Earth is less than three seconds, allowing near-normal voice and video conversation, and allowing some kinds of remote control of machines from Earth that are not possible for any other celestial body The delay for other Solar System bodies is minutes or hours; for example, round trip communication time between Earth and Mars ranges from about eight to forty minutes This, again, could be particularly valuable in an early colony, where life-threatening problems requiring Earth's assistance could occur
  • On the Lunar near side, the Earth appears large and is always visible as an object 60 times brighter than the Moon appears from Earth, unlike more distant locations where the Earth would be seen merely as a star-like object, much as the planets appear from Earth As a result, a Lunar colony might feel less remote to humans living there
  • Building observatory facilities on the Moon from lunar materials allows many of the benefits of space based facilities without the need to launch these into space48 The lunar soil, although it poses a problem for any moving parts of telescopes, can be mixed with carbon nanotubes and epoxies in the construction of mirrors up to 50 meters in diameter4950 It is relatively nearby; astronomical seeing is not a concern; certain craters near the poles are permanently dark and cold, and thus especially useful for infrared telescopes; and radio telescopes on the far side would be shielded from the radio chatter of Earth51 A lunar zenith telescope can be made cheaply with ionic liquid52
  • A farm at the Lunar North Pole could provide eight hours of sunlight per day during the local summer by rotating crops in and out of the sunlight which is continuous for the entire summer A beneficial temperature, radiation protection, insects for pollination, and all other plant needs could be artificially provided during the local summer for a cost One estimate suggested a 05 hectare space farm could feed 100 people53

There are several disadvantages to the Moon as a colony site:

  • The long lunar night would impede reliance on solar power and require that a colony exposed to the sunlit equatorial surface be designed to withstand large temperature extremes about 95 K −1782 °C to about 400 K 127 °C An exception to this restriction are the so-called "peaks of eternal light" located at the Lunar north pole that are constantly bathed in sunlight The rim of Shackleton Crater, towards the Lunar south pole, also has a near-constant solar illumination Other areas near the poles that get light most of the time could be linked in a power grid The temperature 1 meter below the surface of the Moon is estimated to be near constant over the period of a month varying with latitude from near 220 K −53 °C at the equator to near 150 K −123 °C at the poles54
  • The Moon is highly depleted in volatile elements, such as nitrogen and hydrogen Carbon, which forms volatile oxides, is also depleted A number of robot probes including Lunar Prospector gathered evidence of hydrogen generally in the Moon's crust consistent with what would be expected from solar wind, and higher concentrations near the poles55 There had been some disagreement whether the hydrogen must necessarily be in the form of water The mission of the Lunar Crater Observation and Sensing Satellite LCROSS proved in 2009 that there is water on the Moon56 This water exists in ice form perhaps mixed in small crystals in the regolith in a colder landscape than people have ever mined Other volatiles containing carbon and nitrogen were found in the same cold trap as ice43 If no sufficient means is found for recovering these volatiles on the Moon, they would need to be imported from some other source to support life and industrial processes Volatiles would need to be stringently recycled This would limit the colony's rate of growth and keep it dependent on imports The transportation cost of importing volatiles from Earth could be reduced by constructing the upper stage of supply ships using materials high in volatiles, such as carbon fiber and plasticscitation needed The 2006 announcement by the Keck Observatory that the binary Trojan asteroid 617 Patroclus,57 and possibly large numbers of other Trojan objects in Jupiter's orbit, are likely composed of water ice, with a layer of dust, and the hypothesized large amounts of water ice on the closer, main-belt asteroid 1 Ceres, suggest that importing volatiles from this region via the Interplanetary Transport Network may be practical in the not-so-distant future However, these possibilities are dependent on complicated and expensive resource utilization from the mid to outer Solar System, which is not likely to become available to a Moon colony for a significant period of time
  • It is uncertain whether the low one-sixth g gravity on the Moon is strong enough to prevent detrimental effects to human health in the long term Exposure to weightlessness over month-long periods has been demonstrated to cause deterioration of physiological systems, such as loss of bone and muscle mass and a depressed immune system Similar effects could occur in a low-gravity environment, although virtually all research into the health effects of low gravity has been limited to zero gravity
  • The lack of a substantial atmosphere for insulation results in temperature extremes and makes the Moon's surface conditions somewhat like a deep space vacuumcitation needed It also leaves the Lunar surface exposed to half as much radiation as in interplanetary space with the other half blocked by the Moon itself underneath the colony, raising the issues of the health threat from cosmic rays and the risk of proton exposure from the solar wind Lunar rubble can protect living quarters from cosmic rays58 Shielding against solar flares during expeditions outside is more problematic
  • When the Moon passes through the magnetotail of the Earth, the plasma sheet whips across its surface Electrons crash into the Moon and are released again by UV photons on the day side but build up voltages on the dark side59 This causes a negative charge build up from −200 V to −1000 V See Magnetic field of the Moon
  • The lack of an atmosphere increases the chances of the colony being hit by meteors Even small pebbles and dust micrometeoroids have the potential to damage or destroy insufficiently protected structures
  • Moon dust is an extremely abrasive glassy substance formed by micrometeorites and unrounded due to the lack of weathering It sticks to everything, can damage equipment, and it may be toxic60
  • Growing crops on the Moon faces many difficult challenges due to the long lunar night 354 hours, extreme variation in surface temperature, exposure to solar flares, nitrogen-poor soil, and lack of insects for pollination Due to the lack of any atmosphere on the Moon, plants would need to be grown in sealed chambers, though experiments have shown that plants can thrive at pressures much lower than those on Earth61 The use of electric lighting to compensate for the 354-hour night might be difficult: a single acre of plants on Earth enjoys a peak 4 megawatts of sunlight power at noon Experiments conducted by the Soviet space program in the 1970s suggest it is possible to grow conventional crops with the 354-hour light, 354-hour dark cycle62 A variety of concepts for lunar agriculture have been proposed,63 including the use of minimal artificial light to maintain plants during the night and the use of fast growing crops that might be started as seedlings with artificial light and be harvestable at the end of one Lunar day64
  • One of the less obvious difficulties lies not with the Moon itself but rather with the political and national interests of the nations engaged in colonization Assuming that colonization efforts were able to overcome the difficulties outlined above – there would likely be issues regarding the rights of nations and their colonies to exploit resources on the lunar surface, to stake territorial claims and other issues of sovereignty which would have to be agreed upon before one or more nations established a permanent presence on the Moon The ongoing negotiations and debate regarding the Antarctic is a good case study for prospective lunar colonization efforts in that it highlights the numerous pitfalls of developing/inhabiting a location that is subject to the claims of multiple sovereign nations


For more details on this topic, see Geology of the Moon

Russian astronomer Vladislav V Shevchenko proposed in 1988 the following three criteria that a Lunar outpost should meet:citation needed

  • good conditions for transport operations;
  • a great number of different types of natural objects and features on the Moon of scientific interest; and
  • natural resources, such as oxygen The abundance of certain minerals, such as iron oxide, varies dramatically over the Lunar surface65

While a colony might be located anywhere, potential locations for a Lunar colony fall into three broad categories

Polar regionsedit

There are two reasons why the north pole and south pole of the Moon might be attractive locations for a human colony First, there is evidence for the presence of water in some continuously shaded areas near the poles66 Second, the Moon's axis of rotation is sufficiently close to being perpendicular to the ecliptic plane that the radius of the Moon's polar circles is less than 50 km Power collection stations could therefore be plausibly located so that at least one is exposed to sunlight at all times, thus making it possible to power polar colonies almost exclusively with solar energy Solar power would be unavailable only during a lunar eclipse, but these events are relatively brief and absolutely predictable Any such colony would therefore require a reserve energy supply that could temporarily sustain a colony during lunar eclipses or in the event of any incident or malfunction affecting solar power collection Hydrogen fuel cells would be ideal for this purpose, since the hydrogen needed could be sourced locally using the Moon's polar water and surplus solar power Moreover, due to the Moon's uneven surface some sites have nearly continuous sunlight For example, Malapert mountain, located near the Shackleton crater at the Lunar south pole, offers several advantages as a site:

  • It is exposed to the Sun most of the time see Peak of Eternal Light; two closely spaced arrays of solar panels would receive nearly continuous power67
  • Its proximity to Shackleton Crater 116 km, or 698 mi means that it could provide power and communications to the crater This crater is potentially valuable for astronomical observation An infrared instrument would benefit from the very low temperatures A radio telescope would benefit from being shielded from Earth's broad spectrum radio interference67
  • The nearby Shoemaker and other craters are in constant deep shadow, and might contain valuable concentrations of hydrogen and other volatiles67
  • At around 5,000 meters 16,000 feet elevation, it offers line of sight communications over a large area of the Moon, as well as to Earth67
  • The South Pole-Aitken basin is located at the Lunar south pole This is the second largest known impact basin in the Solar System, as well as the oldest and biggest impact feature on the Moon,68 and should provide geologists access to deeper layers of the Moon's crust

NASA chose to use a south-polar site for the Lunar outpost reference design in the Exploration Systems Architecture Study chapter on Lunar Architecture68

At the north pole, the rim of Peary Crater has been proposed as a favorable location for a base69 Examination of images from the Clementine mission appear to show that parts of the crater rim are permanently illuminated by sunlight except during Lunar eclipses69 As a result, the temperature conditions are expected to remain very stable at this location, averaging −50 °C −58 °F69 This is comparable to winter conditions in Earth's Poles of Cold in Siberia and Antarctica The interior of Peary Crater may also harbor hydrogen deposits69

A 199470 bistatic radar experiment performed during the Clementine mission suggested the presence of water ice around the south pole2471 The Lunar Prospector spacecraft reported enhanced hydrogen abundances at the south pole and even more at the north pole, in 200872 On the other hand, results reported using the Arecibo radio telescope have been interpreted by some to indicate that the anomalous Clementine radar signatures are not indicative of ice, but surface roughness73 This interpretation, however, is not universally agreed upon74

A potential limitation of the polar regions is that the inflow of solar wind can create an electrical charge on the leeward side of crater rims The resulting voltage difference can affect electrical equipment, change surface chemistry, erode surfaces and levitate Lunar dust75

Equatorial regionsedit

The Lunar equatorial regions are likely to have higher concentrations of helium-3 rare on Earth but much sought after for use in nuclear fusion research because the solar wind has a higher angle of incidence76 They also enjoy an advantage in extra-Lunar traffic: The rotation advantage for launching material is slight due to the Moon's slow rotation, but the corresponding orbit coincides with the ecliptic, nearly coincides with the Lunar orbit around Earth, and nearly coincides with the equatorial plane of Earth

Several probes have landed in the Oceanus Procellarum area There are many areas and features that could be subject to long-term study, such as the Reiner Gamma anomaly and the dark-floored Grimaldi crater

Far sideedit

The Lunar far side lacks direct communication with Earth, though a communication satellite at the L2 Lagrangian point, or a network of orbiting satellites, could enable communication between the far side of the Moon and Earth77 The far side is also a good location for a large radio telescope because it is well shielded from the Earth78 Due to the lack of atmosphere, the location is also suitable for an array of optical telescopes, similar to the Very Large Telescope in Chile48 To date, there has been no ground exploration of the far side

Scientists have estimated that the highest concentrations of helium-3 will be found in the maria on the far side, as well as near side areas containing concentrations of the titanium-based mineral ilmenite On the near side the Earth and its magnetic field partially shields the surface from the solar wind during each orbit But the far side is fully exposed, and thus should receive a somewhat greater proportion of the ion stream79

Lunar lava tubesedit

High Sun view of a 100 meter deep Lunar pit crater that may provide access to a lava tube

Lunar lava tubes are a potential location for constructing a Lunar base Any intact lava tube on the Moon could serve as a shelter from the severe environment of the Lunar surface, with its frequent meteorite impacts, high-energy ultra-violet radiation and energetic particles, and extreme diurnal temperature variations Lava tubes provide ideal positions for shelter because of their access to nearby resources They also have proven themselves as a reliable structure, having withstood the test of time for billions of years

An underground colony would escape the extreme of temperature on the Moon's surface The average temperature on the surface of the Moon is about −5 °C The day period about 354 hours has an average temperature of about 107 °C 225 °F, although it can rise as high as 123 °C 253 °F The night period also 354 hours has an average temperature of about −153 °C −243 °F80 Underground, both periods would be around −23 °C −9 °F, and humans could install ordinary heaters81

One such lava tube was discovered in early 200982



There have been numerous proposals regarding habitat modules The designs have evolved throughout the years as mankind's knowledge about the Moon has grown, and as the technological possibilities have changed The proposed habitats range from the actual spacecraft landers or their used fuel tanks, to inflatable modules of various shapes Some hazards of the Lunar environment such as sharp temperature shifts, lack of atmosphere or magnetic field which means higher levels of radiation and micrometeoroids and long nights, were unknown early on Proposals have shifted as these hazards were recognized and taken into consideration

Underground coloniesedit

Some suggest building the Lunar colony underground, which would give protection from radiation and micrometeoroids This would also greatly reduce the risk of air leakage, as the colony would be fully sealed from the outside except for a few exits to the surface

The construction of an underground base would probably be more complex; one of the first machines from Earth might be a remote-controlled excavating machine Once created, some sort of hardening would be necessary to avoid collapse, possibly a spray-on concrete-like substance made from available materials83 A more porous insulating material also made in-situ could then be applied Rowley & Neudecker have suggested "melt-as-you-go" machines that would leave glassy internal surfaces84 Mining methods such as the room and pillar might also be used Inflatable self-sealing fabric habitats might then be put in place to retain air Eventually an underground city can be constructed Farms set up underground would need artificial sunlight As an alternative to excavating, a lava tube could be covered and insulated, thus solving the problem of radiation exposure

Surface coloniesedit

Variant for habitat creation on the surface or over lava tube A NASA model of a proposed inflatable module

A possibly easier solution would be to build the Lunar base on the surface, and cover the modules with Lunar soil The Lunar regolith is composed of a unique blend of silica and iron-containing compounds that may be fused into a glass-like solid using microwave energy85 Blacic has studied the mechanical properties of lunar glass and has shown that it is a promising material for making rigid structures, if coated with metal to keep moisture out86 This may allow for the use of "Lunar bricks" in structural designs, or the vitrification of loose dirt to form a hard, ceramic crust

A Lunar base built on the surface would need to be protected by improved radiation and micrometeoroid shielding Building the Lunar base inside a deep crater would provide at least partial shielding against radiation and micrometeoroids Artificial magnetic fields have been proposed8788 as a means to provide radiation shielding for long range deep space manned missions, and it might be possible to use similar technology on a Lunar colony Some regions on the Moon possess strong local magnetic fields that might partially mitigate exposure to charged solar and galactic particles89

In a turn from the usual engineer-designed lunar habitats, London-based Foster + Partners architectural firm proposed a building construction 3D-printer technology in January 2013 that would use Lunar regolith raw materials to produce Lunar building structures while using enclosed inflatable habitats for housing the human occupants inside the hard-shell Lunar structures Overall, these habitats would require only ten percent of the structure mass to be transported from Earth, while using local Lunar materials for the other 90 percent of the structure mass90 "Printed" Lunar soil will provide both "radiation and temperature insulation Inside, a lightweight pressurized inflatable with the same dome shape will be the living environment for the first human Moon settlers"90 The building technology will include mixing Lunar material with magnesium oxide, which will turn the "moonstuff into a pulp that can be sprayed to form the block" when a binding salt is applied that "converts this material into a stone-like solid"90 Terrestrial versions of this 3D-printing building technology are already printing 2 metres 6 ft 7 in of building material per hour with the next-generation printers capable of 35 metres 11 ft per hour, sufficient to complete a building in a week90

Moon Capitaledit

In 2010, The Moon Capital Competition offered a prize for a design of a Lunar habitat intended to be an underground international commercial center capable of supporting a residential staff of 60 people and their families The Moon Capital is intended to be self-sufficient with respect to food and other material required for life support Prize money was provided primarily by the Boston Society of Architects, Google Lunar X Prize and The New England Council of the American Institute of Aeronautics and Astronautics91

3D printed structuresedit

On January 31, 2013, the ESA working with an independent architectural firm, tested a 3D-printed structure that could be constructed of lunar regolith for use as a Moon base92


Nuclear poweredit

A nuclear fission reactor might fulfill most of a Moon base's power requirements93 With the help of fission reactors, one could overcome the difficulty of the 354 hour Lunar night According to NASA, a nuclear fission power station could generate a steady 40 kilowatts, equivalent to the demand of about eight houses on Earth93 An artist’s concept of such a station published by NASA envisages the reactor being buried below the Moon's surface to shield it from its surroundings; out from a tower-like generator part reaching above the surface over the reactor, radiators would extend into space to send away any heat energy that may be left over94

Radioisotope thermoelectric generators could be used as backup and emergency power sources for solar powered colonies

One specific development program in the 2000s was the Fission Surface Power FSP project of NASA and DOE, a fission power system focused on "developing and demonstrating a nominal 40 kWe power system to support human exploration missions The FSP system concept uses conventional low-temperature stainless steel, liquid metal-cooled reactor technology coupled with Stirling power conversion" As of 2010update, significant component hardware testing had been successfully completed, and a non-nuclear system demonstration test was being fabricated95needs update

Helium-3 mining could be used to provide a substitute for tritium for potential production of fusion power in the future

Solar energyedit

For more details on this topic, see Peak of Eternal Light

Solar energy is a possible source of power for a Lunar base Many of the raw materials needed for solar panel production can be extracted on site However, the long Lunar night 354 hours is a drawback for solar power on the Moon's surface This might be solved by building several power plants, so that at least one of them is always in daylight Another possibility would be to build such a power plant where there is constant or near-constant sunlight, such as at the Malapert mountain near the Lunar south pole, or on the rim of Peary crater near the north pole Since lunar regolith contains structural metals like iron and aluminum, solar panels could be mounted high up on locally-built towers that might rotate to follow the sun A third possibility would be to leave the panels in orbit, and beam the power down as microwaves

The solar energy converters need not be silicon solar panels It may be more advantageous to use the larger temperature difference between Sun and shade to run heat engine generators Concentrated sunlight could also be relayed via mirrors and used in Stirling engines or solar trough generators, or it could be used directly for lighting, agriculture and process heat The focused heat might also be employed in materials processing to extract various elements from Lunar surface materials

Energy storageedit

In the early days,clarification needed a combination of solar panels for "day-time" operation and fuel cells for "night-time" operation could be usedaccording to whom

Fuel cells on the Space Shuttle have operated reliably for up to 17 Earth days at a time On the Moon, they would only be needed for 354 hours 14  3⁄4 days – the length of the Lunar night Fuel cells produce water directly as a waste product Current fuel cell technology is more advanced than the Shuttle's cells – PEM Proton Exchange Membrane cells produce considerably less heat though their waste heat would likely be useful during the Lunar night and are lighter, not to mention the reduced mass of the smaller heat-dissipating radiators This makes PEMs more economical to launch from Earth than the shuttle's cells PEMs have not yet been proven in space

Combining fuel cells with electrolysis would provide a "perpetual" source of electricity – solar energy could be used to provide power during the Lunar day, and fuel cells at night During the Lunar day, solar energy would also be used to electrolyze the water created in the fuel cells – although there would be small losses of gases that would have to be replaced

Even if lunar colonies could provide themselves access to a near-continuous source of solar energy, they would still need to maintain fuel cells or an alternate energy storage system to sustain themselves during lunar eclipses and emergency situations


Earth to Moonedit

Conventional rockets have been used for most Lunar explorations to date The ESA's SMART-1 mission from 2003 to 2006 used conventional chemical rockets to reach orbit and Hall effect thrusters to arrive at the Moon in 13 months NASA would have used chemical rockets on its Ares V booster and Lunar Surface Access Module, that were being developed for a planned return to the Moon around 2019, but this was cancelled The construction workers, location finders, and other astronauts vital to building, would have been taken four at a time in NASA's Orion spacecraft

Proposed concepts of Earth-Moon transportation are Space elevators9697

On the surfaceedit

A Lunar rover being unloaded from a cargo spacecraft Conceptual drawing

Lunar colonists will want the ability to transport cargo and people to and from modules and spacecraft, and to carry out scientific study of a larger area of the Lunar surface for long periods of time Proposed concepts include a variety of vehicle designs, from small open rovers to large pressurized modules with lab equipment, and also a few flying or hopping vehicles

Rovers could be useful if the terrain is not too steep or hilly The only rovers to have operated on the surface of the Moon as of 2008update are the three Apollo Lunar Roving Vehicles LRV, developed by Boeing, and the two robotic Soviet Lunokhods The LRV was an open rover for a crew of two, and a range of 92 km during one Lunar day One NASA study resulted in the Mobile Lunar Laboratory concept, a manned pressurized rover for a crew of two, with a range of 396 km The Soviet Union developed different rover concepts in the Lunokhod series and the L5 for possible use on future manned missions to the Moon or Mars These rover designs were all pressurized for longer sorties98

If multiple bases were established on the Lunar surface, they could be linked together by permanent railway systems Both conventional and magnetic levitation Maglev systems have been proposed for the transport lines Mag-Lev systems are particularly attractive as there is no atmosphere on the surface to slow down the train, so the vehicles could achieve velocities comparable to aircraft on the Earth One significant difference with lunar trains, however, is that the cars would need to be individually sealed and possess their own life support systems

For difficult areas, a flying vehicle may be more suitable Bell Aerosystems proposed their design for the Lunar Flying Vehicle as part of a study for NASA Bell also developed the Manned Flying System, a similar concept

Surface to spaceedit

Launch technologyedit

A Lunar base with a mass driver the long structure that goes toward the horizon NASA conceptual illustration

Experience so far indicates that launching human beings into space is much more expensive than launching cargo

One way to get materials and products from the Moon to an interplanetary way station might be with a mass driver, a magnetically accelerated projectile launcher Cargo would be picked up from orbit or an Earth-Moon Lagrangian point by a shuttle craft using ion propulsion, solar sails or other means and delivered to Earth orbit or other destinations such as near-Earth asteroids, Mars or other planets, perhaps using the Interplanetary Transport Network

A Lunar space elevator could transport people, raw materials and products to and from an orbital station at Lagrangian points L1 or L2 Chemical rockets would take a payload from Earth to the L1 Lunar Lagrange location From there a tether would slowly lower the payload to a soft landing on the lunar surface

Other possibilities include a momentum exchange tether system

Launch costsedit

  • Estimates of the cost per unit mass of launching cargo or people from the Moon vary and the cost impacts of future technological improvements are difficult to predict An upper bound on the cost of launching material from the Moon might be about $40,000,000 per kilogram, based on dividing the Apollo program costs by the amount of material returned99100101 At the other extreme, the incremental cost of launching material from the Moon using an electromagnetic accelerator could be quite low The efficiency of launching material from the Moon with a proposed electric accelerator is suggested to be about 50%102 If the carriage of a mass driver weighs the same as the cargo, two kilograms must be accelerated to orbital velocity for each kilogram put into orbit The overall system efficiency would then drop to 25% So 14 kilowatt-hours would be needed to launch an incremental kilogram of cargo to low orbit from the Moon103 At $01/kilowatt-hour, a typical cost for electrical power on Earth, that amounts to $016 for the energy to launch a kilogram of cargo into orbit For the actual cost of an operating system, energy loss for power conditioning, the cost of radiating waste heat, the cost of maintaining all systems, and the interest cost of the capital investment are considerations
  • Passengers cannot be divided into the parcel size suggested for the cargo of a mass driver, nor subjected to hundreds of gravities acceleration However, technical developments could also affect the cost of launching passengers to orbit from the Moon Instead of bringing all fuel and oxidizer from Earth, liquid oxygen could be produced from lunar materials and hydrogen should be available from the lunar poles The cost of producing these on the Moon is yet unknown, but they will be more expensive than production costs on Earth The situation of the local hydrogen is most open to speculation As a rocket fuel, hydrogen could be extended by combining it chemically with silicon to form silane,104 which has yet to be demonstrated in an actual rocket engine In the absence of more technical developments, the cost of transporting people from the Moon will be an impediment to colonization

Surface to and from cis-Lunar spaceedit

A cis-Lunar transport system has been proposed using tethers to achieve momentum exchange105 This system requires zero net energy input, and could not only retrieve payloads from the Lunar surface and transport them to Earth, but could also soft land payloads on to the Lunar surface

Economic developmentedit

For long term sustainability, a space colony should be close to self-sufficient Mining and refining the Moon's materials on-site – for use both on the Moon and elsewhere in the Solar System – could provide an advantage over deliveries from Earth, as they can be launched into space at a much lower energy cost than from Earth It is possible that large amounts of matter will need to be launched into space for interplanetary exploration in the 21st century, and the lower cost of providing goods from the Moon might be attractive83

Space-based materials processingedit

In the long term, the Moon will likely play an important role in supplying space-based construction facilities with raw materials98 Zero gravity in space allows for the processing of materials in ways impossible or difficult on Earth, such as "foaming" metals, where a gas is injected into a molten metal, and then the metal is annealed slowly On Earth, the gas bubbles rise and burst, but in a zero gravity environment, that does not happen The annealing process requires large amounts of energy, as a material is kept very hot for an extended period of time This allows the molecular structure to realign

Exporting material to Earthedit

Exporting material to Earth in trade from the Moon is more problematic due to the cost of transportation, which will vary greatly if the Moon is industrially developed see "Launch costs" above One suggested trade commodity, Helium-3 3He from the solar wind, is thought to have accumulated on the Moon's surface over billions of years, but occurs only rarely on Earth Helium might be present in the Lunar regolith in quantities of 001 ppm to 005 ppm depending on soil In 2006 3He had a market price of about $1500 per gram $15M per kilogram, more than 120 times the value per unit weight of gold and over eight times the value of rhodium

In the future 3He may have a role as a fuel in thermonuclear fusion reactors106 It should require about 100 tonnes of helium-3 to produce the electricity that Earth uses in a year and there should be enough on the moon to provide that much for 10,000 years107

Exporting propellant obtained from lunar wateredit

To reduce the cost of transport, the Moon could store propellants produced from lunar water at one or several depots between the Earth and the Moon, to resupply rockets or satellites in Earth orbit108 The Shackleton Energy Company estimate investment in this infrastructure could cost around $25 billion109

Solar power satellitesedit

Gerard K O'Neill, noting the problem of high launch costs in the early 1970s, came up with the idea of building Solar Power Satellites in orbit with materials from the Moon110 Launch costs from the Moon will vary greatly if the Moon is industrially developed see "Launch costs" above This proposal was based on the contemporary estimates of future launch costs of the space shuttle

On 30 April 1979 the Final Report "Lunar Resources Utilization for Space Construction" by General Dynamics Convair Division under NASA contract NAS9-15560 concluded that use of Lunar resources would be cheaper than terrestrial materials for a system comprising as few as thirty Solar Power Satellites of 10 GW capacity each111

In 1980, when it became obvious NASA's launch cost estimates for the space shuttle were grossly optimistic, O'Neill et al published another route to manufacturing using Lunar materials with much lower startup costs112 This 1980s SPS concept relied less on human presence in space and more on partially self-replicating systems on the Lunar surface under telepresence control of workers stationed on Earth

See alsoedit

  • Spaceflight portal
  • Moon portal
  • Apollo program
  • Aurora programme
  • Chandrayaan-1
  • Chandrayaan-2
  • Colonization of Mars
  • Exploration of the Moon
  • Federation of Galaxy Explorers
  • Human outpost
  • In situ resource utilization
  • Lunar Explorers Society
  • Lunar outpost NASA
  • Lunar space elevator
  • Lunarcrete
  • Lunarcy!
  • Moon in fiction
  • Moon Society
  • National Space Society
  • NewSpace
  • OpenLuna
  • Planetary habitability
  • Shackleton Energy Company
  • Soviet manned lunar programs
  • Space architecture
  • Space Frontier Foundation



  1. ^ "Japan vs NASA in the Next Space Race: Lunar Robonauts" Fast Company Retrieved 12 June 2015 
  3. ^ CRC Handbook of Chemistry and Physics 64th ed 1983 p F-131 
  4. ^ BBC NEWS Lunar mountain has eternal light
  5. ^ "House Science Committee Hearing Charter: Lunar Science & Resources: Future Options" spacerefcom Retrieved 12 June 2015 
  6. ^ a b "Space Race Rekindled Russia Shoots for Moon, Mars" ABC News 2007-09-02 Retrieved 2007-09-02 
  7. ^ Johnson, S W & Leonard, R S; Leonard 1985 "Evolution of Concepts for Lunar Bases" In: Lunar Bases and Space Activities of the 21st Century Houston Lunar and Planetary Institute: 48 Bibcode:1985lbsaconf47J CS1 maint: Multiple names: authors list link
  8. ^ "The life of Konstantin Eduardovitch Tsiolkovsky" wwwinformaticsorg Archived from the original on June 15, 2012 Retrieved January 12, 2008 
  9. ^ a b http://aerospacescholarsjscnasagov/HAS/cirr/em/6/8cfm available at Wayback Machine for June 27, 2007, Lunar Base Designs with history
  10. ^ Altair VI: Rinehart's floating moonbase 1959
  11. ^ Dept of the Army, Project Horizon, A US Army Study for the Establishment of a Lunar Military Outpost, I, Summary Redstone Arsenal, AL, 8 June 1959 See also: Moonport: A History of Apollo Launch Facilities and Operations
  12. ^ Staff Writers 2006-08-03 "Japan Plans Moon Base By 2030" Moon Daily Retrieved 2012-08-16 
  13. ^ RIA Novosti 2007-08-31 "Russia to send manned mission to the Moon by 2025 – space agency" enrianru RIA Novosti Retrieved 2012-08-16 
  14. ^ "'Lunar Ark' Proposed in Case of Deadly Impact on Earth" nationalgeographiccom Retrieved 12 June 2015 
  15. ^ Chittenden, Maurice 9 March 2008 "Mankind's secrets kept in lunar ark" The Sunday Times London Retrieved 2008-03-16 
  16. ^ Highfield, Roger 10 March 2008 "Plans for 'doomsday ark' on the moon" Telegraphcouk London Archived from the original on 2008-03-14 Retrieved 2008-03-16 
  17. ^ Platt, Kevin Holden 14 August 2007 "'Lunar Ark' Proposed in Case of Deadly Impact on Earth" National Geographic News Retrieved 2008-03-16 
  18. ^ Chris Arsenault 2012-01-27 "Gingrich promises US 'moon base' by 2020" Al Jazeera English Retrieved 2012-01-30 
  19. ^ "Newt Gingrich’s moon colony and Mars plan" Slate Magazine 27 January 2012 Retrieved 30 September 2014 
  20. ^ Europe Aiming for International 'Moon Village' April 26, 2016
  21. ^ Jones, Eric; Glover, Ken; Lotzmann, Ulli 20 March 2014, Working on the Moon: Lessons from Apollo, retrieved 10 December 2016 
  22. ^ "LEK Lunar Expeditionary Complex" astronautixcom Retrieved 12 June 2015 
  23. ^ "DLB Module" astronautixcom Retrieved 12 June 2015 
  24. ^ a b Nozette, S ; Lichtenberg, C L; Spudis, P ; Bonner, R ; Ort, W ; Malaret, E ; Robinson, M ; Shoemaker, E M 1996 "The Clementine Bistatic Radar Experiment" Science 274 5292: 1495–1498 Bibcode:1996Sci2741495N PMID 8929403 doi:101126/science27452921495 
  25. ^ Lunar Prospector finds evidence of ice at Moon's poles, NASA, March 5, 1998
  26. ^ "CRS Report: China's Space Program: An Overview" spacerefcom Retrieved 12 June 2015 
  27. ^ Campbell, B; Campbell, A; Carter, M; Margot, L; Stacy, J Oct 2006 "No evidence for thick deposits of ice at the lunar south pole" pdf Nature 443 7113: 835–837 Bibcode:2006Natur443835C ISSN 0028-0836 PMID 17051213 doi:101038/nature05167 
  28. ^ Chandrayaan finds Lunar water, BBC, September 25, 2009
  29. ^ a b Bussey, B; Fristad, E; Schenk, M; Robinson, S; Spudis, D Apr 2005 "Planetary science: constant illumination at the lunar north pole" Nature 434 7035: 842 Bibcode:2005Natur434842B ISSN 0028-0836 PMID 15829952 doi:101038/434842a 
  30. ^ "THE ESA VISION FOR THE FUTURE OF MANNED SPACEFLIGHT" rotorcom Retrieved 2008-02-18 
  31. ^ "ESA_Human_Lunar_Architecture_Activities" esaint Retrieved 2008-02-18 
  32. ^ "Man on moon possible within 15 years" Retrieved March 7, 2007 
  33. ^ "Japan aims for Moon base by 2030" Retrieved August 3, 2006 
  34. ^ http://sciencenasagov/headlines/y2006/10apr_lcroshtm
  35. ^ "NASA – NASA Returning to the Moon with First Lunar Launch in a Decade" nasagov Retrieved 12 June 2015 
  36. ^ "LCROSS Viewer's Guide – NASA Science" Retrieved 30 September 2014 
  37. ^ "NASA – LCROSS" Retrieved 30 September 2014 
  38. ^ Pieters, C M; Goswami, J N; Clark, R N; Annadurai, M; Boardman, J; Buratti, B; Combe, J -P; Dyar, M D; Green, R; Head, J W; Hibbitts, C; Hicks, M; Isaacson, P; Klima, R; Kramer, G; Kumar, S; Livo, E; Lundeen, S; Malaret, E; McCord, T; Mustard, J; Nettles, J; Petro, N; Runyon, C; Staid, M; Sunshine, J; Taylor, L A; Tompkins, S; Varanasi, P 2009 "Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M3 on Chandrayaan-1" Science 326 5952: 568–572 PMID 19779151 doi:101126/science1178658 
  39. ^ "Welcome To ISRO:: Press Release:: 29 August 2009"  101004 isroorg
  40. ^ "It's not lunacy, probes find water in Moon dirt" USA Today 23 September 2009 Retrieved 2009-09-26 
  41. ^ "Water discovered on Moon: "A lot of it actually"" The Hindu 23 September 2009 Retrieved 2009-09-26 
  42. ^ "Statement of Mars Society President Robert Zubrin on the LCROSS Results" Archived from the original on November 24, 2009 Retrieved 30 September 2014 
  43. ^ a b PSRD CosmoSparks Report--An Icy Treat
  44. ^ Bill Keeter: NASA Radar Finds Ice Deposits at Moon's North Pole – Additional evidence of water activity on moon National Aeronautics and Space Administration, March 2, 2010, retrieved June 27, 2011
  45. ^ BBC News Paul Rincon: Doubt cast on evidence for wet Moon
  46. ^ "Outer-space sex carries complications" msnbcmsncom Retrieved 2008-02-18 
  47. ^ "Known effects of long-term space flights on the human body" racetomarscom Retrieved 2008-02-16 
  48. ^ a b Takahashi, Yuki September 1999 "Mission Design for Setting up an Optical Telescope on the Moon" California Institute of Technology Archived from the original on 2015-11-06 Retrieved 27 March 2011 
  49. ^ Naeye, Robert 6 April 2008 "NASA Scientists Pioneer Method for Making Giant Lunar Telescopes" Goddard Space Flight Center Retrieved 27 March 2011 
  50. ^ "Build astronomical observatories on the Moon" physicstodayorg Archived from the original on 2007-11-07 Retrieved 2008-02-16 
  51. ^ Chandler, David 15 February 2008 "MIT to lead development of new telescopes on moon" MIT News Retrieved 27 March 2011 
  52. ^ Bell, Trudy 9 October 2008 "Liquid Mirror Telescopes on the Moon" Science News NASA Retrieved 27 March 2011 
  53. ^ Salisbury, F B 1991 "Lunar farming: achieving maximum yield for the exploration of space" pdf HortScience : a publication of the American Society for Horticultural Science 26 7: 827–833 ISSN 0018-5345 PMID 11537565 Lay summary 
  54. ^ McGRAW-HILL ENCYCLOPEDIA OF Science & Technology, vol 11, 8th Edition, c 1997, page 470
  55. ^ "Archived copy" Archived from the original on 2006-12-09 Retrieved 2012-12-29 
  56. ^ Jonas Dino: LCROSS Impact Data Indicates Water on Moon National Aeronautics and Space Administration, November 13, 2009, retrieved June 23, 2011
  57. ^ "Binary asteroid in Jupiter's orbit may be icy comet from solar system's infancy" berkeleyedu Retrieved 2008-02-16 
  58. ^ NASA, A Tour of the Colony
  59. ^ NASA The Moon and the Magnetotail
  60. ^ "Lunar explorers face moon dust dilemma" msnbccom Retrieved 2008-02-16 
  61. ^ Massimino D, Andre M 1999 "Growth of wheat under one tenth of the atmospheric pressure" Adv Space Res 24 3: 293–6 Bibcode:1999AdSpR24293M PMID 11542536 doi:101016/S0273-11779900316-6 
  62. ^ Terskov, I A ; L; Lisovskiĭ, G M; Ushakova, S A; Parshina, O V; Moiseenko, L P May 1978 "Possibility of using higher plants in a life-support system on the moon" Kosmicheskaia biologiia i aviakosmicheskaia meditsina 12 3: 63–66 ISSN 0321-5040 PMID 26823 
  63. ^ "Lunar Agriculture" Artemis Project Retrieved 2008-02-16 
  64. ^ "Farming in Space" questnasagov Retrieved 2008-02-16 
  65. ^ Composition of the Moon's Crust by Linda M V Martel Hawai'i Institute of Geophysics and Planetology
  66. ^ "Ice on the Moon" thespacereviewcom Retrieved 2008-02-16 
  67. ^ a b c d "The Moon's Malapert Mountain Seen As Ideal Site for Lunar Lab" spacecom Archived from the original on February 13, 2006 Retrieved 2008-02-18 
  68. ^ a b "Lunar Architecture" PDF nasagov Retrieved 2008-02-18 
  69. ^ a b c d "HOUSTON, WE'VE HAD A PROBLEM" Astronomycom Retrieved 12 June 2015 
  70. ^ Clementine Bistatic Radar Experiment, NASA, April 26, 2011, retrieved June 23, 2011
  71. ^ "The Clementine Mission" cmfnrlnavymil Retrieved 2008-02-20 
  72. ^ "EUREKA! ICE FOUND AT LUNAR POLES" lunararcnasagov Archived from the original on 2006-12-09 Retrieved 2008-02-20 
  73. ^ "Cornell News: No ice found at lunar poles See above" Retrieved December 11, 2005 
  74. ^ Spudis, Paul "Ice on the Moon" thespacereviewcom Retrieved 2006-02-19 
  75. ^ Staff April 17, 2010 "Lunar Polar Craters May Be Electrified, NASA Calculations Show" ScienceDaily Retrieved 2010-04-19 
  76. ^ "DEVELOPING_A_SITE_SELECTION_STRATEGY_for_a_LUNAR_OUTPOST" PDF lpiusraedu Retrieved 2008-02-19 
  77. ^ "LUNAR_FAR-SIDE_COMMUNICATION_SATELLITES" PDF nasagov Retrieved 2008-02-19 
  79. ^ Johnson, Jeffrey R; Swindle, Timothy D; Lucey, Paul G 1999 "Estimated Solar Wind-Implanted Helium-3 Distribution on the Moon" Geophysical Research Letters aguorg 26 3: 385 Bibcode:1999GeoRL26385J doi:101029/1998GL900305 Retrieved 2008-02-18 
  80. ^ "Artremis project: Lunar Surface Temperatures" Artemis Project Retrieved 2008-02-18 
  81. ^ "Energy conversion evolution at lunar polar sites" PDF The Planetary Society Retrieved 2008-02-18 
  82. ^ "Moon hole might be suitable for colony" CNN 2010-01-01 
  83. ^ a b Tung Dju T D Lin, cited via James, Barry 1992-02-13 "On Moon, Concrete Digs" International Herald Tribune Archived from the original on 2006-11-24 Retrieved 2006-12-24 
  84. ^ Rowley, John C; Neudecker, Joseph W 1985 "In Situ Rock Melting Applied to Lunar Base Construction and for Exploration Drilling and Coring on the Moon" Lunar Bases and Space Activities of the 21st Century Houston, TX: Lunar & Planetary Institute: 465–477 Bibcode:1985lbsaconf465R 
  85. ^ "Lunar Dirt Factories A look at how regolith could be the key to permanent outposts on the moon" The Space Monitor 2007-06-18 Retrieved 2008-10-24 dead link
  86. ^ Blacic, James D 1985 "Mechanical Properties of Lunar Materials Under Anhydrous, Hard Vacuum Conditions: Applications of Lunar Glass Structural Components" Lunar Bases and Space Activities of the 21st Century Houston, TX: Lunar & Planetary Institute: 487–495 Bibcode:1985lbsaconf487B 
  87. ^ Buhler, Charles April 28, 2005 "Analysis of a Lunar Base Electrostatic Radiation Shield Concept" PDF Retrieved February 20, 2013 
  88. ^ Westover, Shayne November 12, 2012 "Magnet Architectures and Active Radiation Shielding Study" PDF Retrieved February 20, 2013 
  89. ^ Powell, David 2006-11-14 "Moon's Magnetic Umbrella Seen as Safe Haven for Explorers" SPACEcom Retrieved 2006-12-24 
  90. ^ a b c d Diaz, Jesus 2013-01-31 "This Is What the First Lunar Base Could Really Look Like" Gizmodo Retrieved 2013-02-01 
  91. ^ Cohen, Marc 2010-08-30 "Moon Capital: A Commercial Gateway To The Moon" Moon Daily Retrieved 2010-08-30 
  92. ^ "Foster + Partners works with European Space Agency to 3D print structures on the moon" Foster + Partners 31 January 2013 Retrieved 1 February 2013 
  93. ^ a b Stephanie Schierholz, Grey Hautaluoma, Katherine K Martin: NASA Developing Fission Surface Power Technology National Aeronautics and Space Administration, September 10, 2008, retrieved June 27, 2011
  94. ^ Kathleen Zona: IMAGE FOR RELEASE 08-042 National Aeronautics and Space Administration, September 10, 2008, retrieved June 27, 2011
  95. ^ Mason, Lee; Sterling Bailey, Ryan Bechtel, John Elliott, Jean-Pierre Fleurial, Mike Houts, Rick Kapernick, Ron Lipinski, Duncan MacPherson, Tom Moreno, Bill Nesmith, Dave Poston, Lou Qualls, Ross Radel, Abraham Weitzberg, Jim Werner 18 November 2010 "Small Fission Power System Feasibility Study — Final Report" NASA/DOE Retrieved 3 October 2015 CS1 maint: Multiple names: authors list link
  96. ^ Smitherman, D V, "Space Elevators, An Advanced Earth-Space Infrastructure for the New Millennium", NASA/CP-2000-210429 1
  97. ^ Sarmont, E, ”Affordable to the Individual Spaceflight”, accessed Feb 6, 2014 2
  98. ^ a b "Lunar base" RussianSpaceWebcom Retrieved 2006-12-24 
  99. ^ Mcgraw-Hill Encyclopedia of Science & Technology 17 1997 p 107 ISBN 978-0-07-144143-8 385 kilograms of rocks were returned to Earth with the Apollo missions 
  100. ^ "Weight on Moon" Retrieved July 9, 2009 An astronaut with space suit weighs about 150 kilograms 
  101. ^ Stine, Deborah D 4 February 2009 "The Manhattan Project, the Apollo Program, and Federal Energy Technology R&D programs: A Comparative Analysis" PDF Congressional Research Service Retrieved July 9, 2009 The Apollo program costs were about $98 billion 
  102. ^ David Darling "mass driver" The Internet Encyclopedia of Science Retrieved July 9, 2009 
  103. ^ The circular orbital speed for any central body equals the square root of the quantity the radius of the orbit times the gravity of the central body at that point; for the Lunar surface: the square root of 1,730,000 meters times 163 meters per second squared is 1680 meters per second The energy of this motion for one kilogram is one half the square of the speed, 1,410,000 watt seconds or 0392 kilowatt-hours With a 25% efficient accelerator, 16 kilowatt-hours are needed to achieve the orbital velocity
  104. ^ "Moon Miners' Manifesto: Editorial" Retrieved 30 September 2014 
  105. ^ Hoyt, Robert, P; Uphoff, Chauncey 20–24 June 1999 "35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit" Los Angeles, CA: American Institute of Aeronautics and Astronautics AIAA 99-2690  |contribution= ignored help
  106. ^ "FTI Research" Retrieved 30 September 2014 
  107. ^ Shameem Kazmi "Moon Mining: Myth or reality" earthtimesorg Retrieved 12 June 2015 
  108. ^ Spudis, Paul D; Lavoie, Anthony R September 29, 2011 "Using the resources of the Moon to create a permanent, cislunar space faring system" PDF AIAA Space 2011 Conference & Exposition 
  109. ^ "Mining the Moon's Water: Q & A with Shackleton Energy's Bill Stone" spacecom 13 January 2011 
  110. ^ O'Neill, Gerard K The High Frontier, Human Colonies in Space p 57 ISBN 0-688-03133-1 
  111. ^ General Dynamics Convair Division 1979 Lunar Resources Utilization for Space Construction PDF GDC-ASP79-001 
  112. ^ O'Neill, Gerard K; Driggers, G; O'Leary, B October 1980 "New Routes to Manufacturing in Space" Astronautics and Aeronautics 18: 46–51 Bibcode:1980AsAer1846G 

General references

  • Peter Eckart 2006 The Lunar Base Handbook, 2nd edition McGraw-Hill p 820 ISBN 978-0-07-329444-5 
  • Wendell Mendell, ed 1986 Lunar bases and space activities of the 21st century Lunar and Planetary Institute p 865 ISBN 0-942862-02-3 
  • G Jeffrey Taylor December 23, 2004 "Cosmochemistry and Human Exploration" Planetary Science Research Discoveries 
  • G Jeffrey Taylor November 21, 2000 "Mining the Moon, Mars, and Asteroids" Planetary Science Research Discoveries 

Further readingedit

  • Resource Utilization Concepts for MoonMars; ByIris Fleischer, Olivia Haider, Morten W Hansen, Robert Peckyno, Daniel Rosenberg and Robert E Guinness; 30 September 2003; IAC Bremen, 2003 29 Sept – 03 Oct 2003 and MoonMars Workshop 26–28 Sept 2003, Bremen Accessed on 18 January 2010
  • Erik Seedhouse 2009 Lunar Outpost: The Challenges of Establishing Human Settlements on the Moon Springer ISBN 978-0-387-09746-6  Publisher's book page
  • Madhu Thangavelu; Schrunk, David G; Burton Sharpe; Bonnie L Cooper 2008 The Moon: resources, future development, and settlement 2nd ed Springer ISBN 0-387-36055-7 

External linksedit

  • Nozette S, Lichtenberg CL, Spudis P; et al November 1996 "The Clementine bistatic radar experiment" Science 274 5292: 1495–8 Bibcode:1996Sci2741495N PMID 8929403 doi:101126/science27452921495 CS1 maint: Multiple names: authors list linkCS1 maint: Explicit use of et al link
  • Space Daily Lunar Polar Ice Not Found With Arecibo Radar Retrieved December 18, 2004
  • NASA Ames Research Center Eureka! Ice found at Lunar Poles Retrieved December 18, 2004
  • Cornell News Arecibo radar shows no evidence of thick ice at lunar poles Retrieved December 18, 2004
  • NASA Johnson Space Centre Liftoff! Moon Base Alpha Last checked January 20, 2005
  • Encyclopedia Astronautica Subcategory: – Manned – Lunar rover Retrieved December 20, 2004
  • DigitalSpace Concepts A Multi-Function "Service Station" for Lunar Telerobotic Base Preparation Checked January 29, 2006
  • The vision for space exploration, NASA
  • Evolvable Lunar Architecture is a well thought plan for lower risk for moon and Mars development while lowering cost by ten times
  • How Stuff Works – What if we lived on the moon Retrieved 15 March 2007
  • Wiki devoted to the return to the Moon – Lunarpedia
  • OpenLuna Foundation OpenLunaorg
  • Elements of A South Polar Lunar Settlement 3
  • MOON CAPITAL Competition 2010
  • Building a lunar base with 3D printing ESA
  • Moon Storage: One Small Space For Man, One Giant Space For Mankind Moon Storage Infographic Retrieved September 1, 2014

colonization of the moon, colonization of the moon project, history of the moon, history of the moon cake festival, history of the moon family, history of the moon family by william h moon, history of the moon festival, history of the moonlight sonata, history of the moonwalk dance, human colonization of the moon

Colonization of the Moon Information about

Colonization of the Moon

  • user icon

    Colonization of the Moon beatiful post thanks!


Colonization of the Moon
Colonization of the Moon
Colonization of the Moon viewing the topic.
Colonization of the Moon what, Colonization of the Moon who, Colonization of the Moon explanation

There are excerpts from wikipedia on this article and video

Random Posts

The San Francisco Examiner

The San Francisco Examiner

The San Francisco Examiner is a longtime daily newspaper distributed in and around San Francisco, Ca...
Frederator Films

Frederator Films

Frederator Films is an animation studio founded by Fred Seibert as part of Frederator Studios, with ...
John Hasbrouck Van Vleck

John Hasbrouck Van Vleck

John Hasbrouck Van Vleck March 13, 1899 – October 27, 1980 was an American physicist and mathematici...
Christian Lacroix

Christian Lacroix

Christian Marie Marc Lacroix French pronunciation: ​kʁistjɑ̃ lakʁwa; born 16 May 1951 is a Fren...